login
A203301
Self-generating triangle based on symmetric functions.
2
2, 1, 2, 1, 3, 2, 1, 6, 11, 6, 1, 24, 191, 564, 396, 1, 1176, 435503, 52853928, 1076228496, 1023808896, 1, 2153328000, 1213787658541781999, 58766849935745220643571376, 25431652043775702966453113185344, 29851714119640536870115136698893312
OFFSET
1,1
COMMENTS
Let row n+1 be (c0, c1, c2,...,cn). Then
c0*x^n + c1*x^(n-1) +...+ cn=(x+b0)(x+b1)...(x+bm),
where (b0,b1,b2,...,bm) is row n.
FORMULA
row n+1 : f(0,r), f(1,r),...f(n,r), where f(k,r)=(k-th elementary symmetric function), r=(row n).
EXAMPLE
First five rows:
2
1....2
1....3......2
1....6......11......6
1....24....191....564....396
The factorization property is illustrated by
x^2 + 3x + 2 -> (x+1)(x+3)(x+2) = x^3 + 6x^2 + 11x + 6.
MATHEMATICA
s =.; s[1] = {2};
Prepend[Table[s[z] = Table[SymmetricPolynomial
[k, s[z - 1]], {k, 0, z - 1}], {z, 2, 7}], s[1]]
% // TableForm (* A203301 triangle *)
%% // Flatten (* A203301 sequence *)
(* Peter J. C. Moses, Dec 30 2011 *)
CROSSREFS
Cf. A203300.
Sequence in context: A029635 A375577 A372704 * A309853 A107456 A334864
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Dec 31 2011
STATUS
approved