login

Revision History for A183036

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
G.f.: exp( Sum_{n>=1} A001511(n)*2^A001511(n)*x^n/n ) where A001511(n) equals the 2-adic valuation of 2n.
(history; published version)
#10 by Russ Cox at Fri Mar 30 18:37:23 EDT 2012
AUTHOR

_Paul D. Hanna (pauldhanna(AT)juno.com), _, Dec 19 2010

Discussion
Fri Mar 30
18:37
OEIS Server: https://oeis.org/edit/global/213
#9 by T. D. Noe at Mon Dec 20 13:37:57 EST 2010
STATUS

reviewed

approved

#8 by Joerg Arndt at Mon Dec 20 03:38:57 EST 2010
STATUS

proposed

reviewed

#7 by Paul D. Hanna at Sun Dec 19 21:09:13 EST 2010
CROSSREFS
#6 by Paul D. Hanna at Sun Dec 19 21:06:50 EST 2010
FORMULA

G.f. satisfies: A(x) = (1+-x^2)/(1-x) ^2 * A(x^2)^2/A(x^4).

#5 by Paul D. Hanna at Sun Dec 19 20:54:58 EST 2010
COMMENTS

Note: 2n/2^A001511(n) is odd for n>=1, so that A001511(n) is logarithmic in nature.

2^A001511(n) exactly divides 2n.

FORMULA

G.f. satisfies: A(x) = (1+x)/(1-x) * A(x^2)^2/A(x^4).

#4 by Paul D. Hanna at Sun Dec 19 18:02:33 EST 2010
NAME

G.f.: exp( Sum_{n>=1} A001511(n)*2^A001511(n)*x^n/n ) where A001511(n) equals the 2-adic valuation of 2n.

COMMENTS

Compare to B(x), the g.f. of the binary partitions (A000123):

Note: 2n/2^A001511(n) is odd for n>=1, so that A001511(n) is logarithmic in nature.

EXAMPLE

G.f.: A(x) = 1 + 2*x + 6*x^2 + 10*x^3 + 24*x^4 + 38*x^5 + 74*x^6 +...

PROG

(PARI) {a(n)=polcoeff(exp(sum(m=1, n, valuation(2*m, 2)*2^valuation(2*m, 2)*x^m/m)+x*O(x^n)), n)}

CROSSREFS
#3 by Paul D. Hanna at Sun Dec 19 17:50:00 EST 2010
NAME

allocated for Paul D. Hanna

G.f.: exp( Sum_{n>=1} A001511(n)*2^A001511(n)*x^n/n ) where A001511(n) equals the 2-adic valuation of 2n.

DATA

1, 2, 6, 10, 24, 38, 74, 110, 200, 290, 486, 682, 1096, 1510, 2314, 3118, 4650, 6182, 8946, 11710, 16616, 21522, 29886, 38250, 52328, 66406, 89394, 112382, 149496, 186610, 245086, 303562, 394814, 486066, 625686, 765306, 977112, 1188918, 1504954

OFFSET

0,2

COMMENTS

Compare to B(x), the g.f. of the binary partitions (A000123):

B(x) = exp( Sum_{n>=1} 2^A001511(n)*x^n/n ) = (1-x)^(-1)*Product_{n>=0} 1/(1 - x^(2^n)).

EXAMPLE

G.f.: A(x) = 1 + 2*x + 6*x^2 + 10*x^3 + 24*x^4 + 38*x^5 + 74*x^6 +...

log(A(x)) = 2*x + 8*x^2/2 + 2*x^3/3 + 24*x^4/4 + 2*x^5/5 + 8*x^6/6 + 2*x^7/7 + 64*x^8/8 + 2*x^9/9 + 8*x^10/10 +...+ A183037(n)*x^n/n +...

PROG

(PARI) {a(n)=polcoeff(exp(sum(m=1, n, valuation(2*m, 2)*2^valuation(2*m, 2)*x^m/m)+x*O(x^n)), n)}

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Paul D. Hanna (pauldhanna(AT)juno.com), Dec 19 2010

STATUS

approved

proposed

#2 by Paul D. Hanna at Sun Dec 19 17:45:01 EST 2010
KEYWORD

allocating

allocated

#1 by Paul D. Hanna at Sun Dec 19 17:45:01 EST 2010
NAME

allocated for Paul D. Hanna

KEYWORD

allocating

STATUS

approved