login
A183036
G.f.: exp( Sum_{n>=1} A001511(n)*2^A001511(n)*x^n/n ) where A001511(n) equals the 2-adic valuation of 2n.
3
1, 2, 6, 10, 24, 38, 74, 110, 200, 290, 486, 682, 1096, 1510, 2314, 3118, 4650, 6182, 8946, 11710, 16616, 21522, 29886, 38250, 52328, 66406, 89394, 112382, 149496, 186610, 245086, 303562, 394814, 486066, 625686, 765306, 977112, 1188918, 1504954
OFFSET
0,2
COMMENTS
Compare to B(x), the g.f. of the binary partitions (A000123):
B(x) = exp( Sum_{n>=1} 2^A001511(n)*x^n/n ) = (1-x)^(-1)*Product_{n>=0} 1/(1 - x^(2^n)).
2^A001511(n) exactly divides 2n.
FORMULA
G.f. satisfies: A(x) = (1-x^2)/(1-x)^2 * A(x^2)^2/A(x^4).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 10*x^3 + 24*x^4 + 38*x^5 + 74*x^6 +...
log(A(x)) = 2*x + 8*x^2/2 + 2*x^3/3 + 24*x^4/4 + 2*x^5/5 + 8*x^6/6 + 2*x^7/7 + 64*x^8/8 + 2*x^9/9 + 8*x^10/10 +...+ A183037(n)*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, valuation(2*m, 2)*2^valuation(2*m, 2)*x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 19 2010
STATUS
approved