reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Triangle T(n,k) read by rows: Padovan factorial ratios T(n,k) = round(c(n)/(c(k)*c(n-k))) where c are partial products of a generalized Padovan sequence with multiplier q = 2defined in comments.
Start from the generalized Padovan sequence A159284 and its partial products c(n) = 1, 1, 1, 1, 3, 9, 45, 405, 4455, 84645, 2454705, ... . Then T(n,k) = round( c(n)/(c(k)*c(n-k)) ).
Row sums are 1, 2, 3, 4, 11, 26, 87, 380, 1707, 10490, 79955, ...
proposed
editing
editing
proposed
Triangle tT(n,k) read by rows: Padovan factorial ratios round(c(n)/(c(k)*c(n-k)) ) where c are partial products of a generalized Padovan sequence with multiplier mq = 2.
Start from the generalized Padovan sequence A159284 and its partial products c(n) = 1, 1, 1, 1, 3, 9, 45, 405, 4455, 84645, 2454705, ... . Then tT(n,k) = round( c(n)/(c(k)*c(n-k)) ).
Row sums are 1, 2, 3, 4, 11, 26, 87, 380, 1707, 10490, 79955, ...
Note that rows n>=14 contain fractions. R. J. Mathar, Jul 05 2012
G. C. Greubel, <a href="/A172358/b172358.txt">Rows n = 0..50 of the triangle, flattened</a>
T(n, k, q) = round(c(n,q)/(c(k,q)*c(n-k,q)), where c(n,q) = Product_{j=1..n} f(j,q), f(n, q) = f(n-2, q) + q*f(n-3, q), f(0,q)=0, f(1,q) = f(2,q) = 1, and q = 2. - G. C. Greubel, May 09 2021
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 3, 3, 3, 1;
1, 3, 9, 9, 3, 1;
1, 5, 15, 45, 15, 5, 1;
1, 9, 45, 135, 135, 45, 9, 1;
1, 11, 99, 495, 495, 495, 99, 11, 1;
1, 19, 209, 1881, 3135, 3135, 1881, 209, 19, 1;
1, 29, 551, 6061, 18183, 30305, 18183, 6061, 551, 29, 1;
Clearf[n_, q_]:= f[n, q]= If[n<3, Fibonacci[n], f[n-2, q] + q*f, c, a, t[n-3, q]];
f[0, a_] := 0; f[1, a_] := 1; f[2, a_] := 1;
c[n_, q_]:= Product[f[j, q], {j, n}];
fT[n_, a_k_, q_] := fRound[c[n, aq] = f/(c[n - 2, ak, q] + a*fc[n - 3, ak, q])];
c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}];
Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, May 09 2021 *)
(Sage)
@CachedFunction
def f(n, q): return fibonacci(n) if (n<3) else f(n-2, q) + q*f(n-3, q)
def c(n, q): return product( f(j, q) for j in (1..n) )
def T(n, k, q): return round(c(n, q)/(c(k, q)*c(n-k, q)))
flatten([[T(n, k, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 09 2021
Definition corrected to give integral terms by G. C. Greubel, May 09 2021
approved
editing
proposed
approved
editing
proposed
Fifth (third cubic) type of beta integer triangle sequence: a=2;f(n,a)=f(n-2,a)+a*f(n-3,a);c(n,a)=If[n == 0, 1, Product[f(i, a), {i, 1, n}]];t(n,m,a)=c(n, a)/(c(m, a)*c(n - m, a))
Triangle t(n,k) read by rows: Padovan factorial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Padovan sequence with multiplier m=2.
Start from the generalized Padovan sequence A159284 and its partial products c(n) = 1, 1, 1, 1, 3, 9, 45, 405, 4455, 84645, 2454705... Then t(n,k) = c(n)/(c(k)*c(n-k)).
Row sums are: 1, 2, 3, 4, 11, 26, 87, 380, 1707, 10490, 79955,...
{1, 2, 3, 4, 11, 26, 87, 380, 1707, 10490, 79955,...}.
Note that rows n>=14 contain fractions. R. J. Mathar, Jul 05 2012
a=2;
f(n,a)=a*f(n-1,a)+a*f(n-3,a);
c(n,a)=If[n == 0, 1, Product[f(i, a), {i, 1, n}]];
t(n,m,a)=c(n, a)/(c(m, a)*c(n - m, a))
{1},
1;
{1, 1},;
{1, 1, 1},;
{1, 1, 1, 1},;
{1, 3, 3, 3, 1},;
{1, 3, 9, 9, 3, 1},;
{1, 5, 15, 45, 15, 5, 1},;
{1, 9, 45, 135, 135, 45, 9, 1},;
{1, 11, 99, 495, 495, 495, 99, 11, 1},;
{1, 19, 209, 1881, 3135, 3135, 1881, 209, 19, 1},;
{1, 29, 551, 6061, 18183, 30305, 18183, 6061, 551, 29, 1};
cf. A010048
nonn,tabl,unedless
approved
editing
_Roger L. Bagula (rlbagulatftn(AT)yahoo.com), _, Feb 01 2010