OFFSET
0,8
COMMENTS
Conjecture: polynomials with (positive) Fibonomial coefficients are reducible iff n odd > 1. - Ralf Stephan, Oct 29 2004
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15.
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 84 and 492.
LINKS
T. D. Noe, Rows n = 0..50 of triangle, flattened
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
A. T. Benjamin and S. S. Plott, A combinatorial approach to fibonomial coefficients, Fib. Quart. 46/47 (1) (2008/9) 7-9.
A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972.
Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
M. Dziemianczuk, Cobweb Sequences Map, See sequence (4).2.
Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
P. F. F. Espinosa, J. F. González, J. P. Herrán, A. M. Cañadas, and J. L. Ramírez, On some relationships between snake graphs and Brauer configuration algebras, Algebra Disc. Math. (2022) Vol. 33, No. 2, 29-59.
S. Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
Dale Gerdemann, Golden Ratio Base Digit Patterns for Columns of the Fibonomial Triangle, "Another interesting pattern is for Golden Rectangle Numbers A001654. I made a short video illustrating this pattern, along with other columns of the Fibonomial Triangle A010048".
Dale K. Hathaway and Stephen L. Brown, Fibonacci Powers and a Fascinating Triangle, The College Mathematics Journal, 28 (No. 2, 1997), 124-128. See Fig. 1.
Ron Knott, The Fibonomials.
E. Krot, An introduction to finite Fibonomial calculus, arXiv:math/0503210 [math.CO], 2005.
E. Krot, Further developments in Fibonomial calculus, arXiv:math/0410550 [math.CO], 2004.
D. Marques and P. Trojovsky, On Divisibility of Fibonomial Coefficients by 3, J. Int. Seq. 15 (2012) #12.6.4.
D. Marques and P. Trojovsky, The p-adic order of some fibonomial coefficients, J. Int. Seq. 18 (2015) # 15.3.1.
R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
Phakhinkon Phunphayap, Various Problems Concerning Factorials, Binomial Coefficients, Fibonomial Coefficients, and Palindromes, Ph. D. Thesis, Silpakorn University (Thailand 2021).
Phakhinkon Phunphayap and Prapanpong Pongsriiam, Explicit Formulas for the p-adic Valuations of Fibonomial Coefficients, J. Int. Seq. 21 (2018), #18.3.1.
C. Pita, On s-Fibonomials, J. Int. Seq. 14 (2011) # 11.3.7.
C. J. Pita Ruiz Velasco, Sums of Products of s-Fibonacci Polynomial Sequences, J. Int. Seq. 14 (2011) # 11.7.6.
T. M. Richardson, The Filbert Matrix, arXiv:math/9905079 [math.RA], 1992.
Bruce Sagan, Two Binomial Coefficient Analogues, Slides, 2013.
Jeremiah Southwick, A Conjecture concerning the Fibonomial Triangle, arXiv:1604.04775 [math.NT], 2016.
Ralf Stephan, A recurrence for the fibonomials.
Eric Weisstein's World of Mathematics, Fibonacci Coefficient, q-Binomial Coefficient.
FORMULA
T(n, k) = ((n, k)) = (F(n)*F(n-1)*...*F(n-k+1))/(F(k)*F(k-1)*...*F(1)), F(i) = Fibonacci numbers A000045.
T(n, k) = Fibonacci(n-k-1)*T(n-1, k-1) + Fibonacci(k+1)*T(n-1, k).
T(n, k) = phi^(k*(n-k)) * C(n, k)_{-1/phi^2}, where phi = (1+sqrt(5))/2 = A001622 is the golden ratio, and C(n, k)_q is the q-binomial coefficient. - Vladimir Reshetnikov, Sep 26 2016
EXAMPLE
First few rows of the triangle T(n, k) are:
n\k 0 1 2 3 4 5 6 7 8 9 10
0: 1
1: 1 1
2: 1 1 1
3: 1 2 2 1
4: 1 3 6 3 1
5: 1 5 15 15 5 1
6: 1 8 40 60 40 8 1
7: 1 13 104 260 260 104 13 1
8: 1 21 273 1092 1820 1092 273 21 1
9: 1 34 714 4641 12376 12376 4641 714 34 1
10: 1 55 1870 19635 85085 136136 85085 19635 1870 55 1
... - Table extended and reformatted by Wolfdieter Lang, Oct 10 2012
For n=7 and k=3, n - k + 1 = 7 - 3 + 1 = 5, so T(7,3) = F(7)*F(6)*F(5)/( F(3)*F(2)*F(1)) = 13*8*5/(2*1*1) = 520/2 = 260. - Michael B. Porter, Sep 26 2016
MAPLE
A010048 := proc(n, k)
mul(combinat[fibonacci](i), i=n-k+1..n)/mul(combinat[fibonacci](i), i=1..k) ;
end proc:
seq(seq(A010048(n, k), k=0..n), n=0..10) ; # R. J. Mathar, Feb 05 2015
MATHEMATICA
f[n_, k_] := Product[ Fibonacci[n - j + 1]/Fibonacci[j], {j, k}]; Table[ f[n, i], {n, 0, 10}, {i, 0, n}] (* Robert G. Wilson v, Dec 04 2009 *)
Column[Round@Table[GoldenRatio^(k(n-k)) QBinomial[n, k, -1/GoldenRatio^2], {n, 0, 10}, {k, 0, n}], Center] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Sep 25 2016 *)
PROG
(Maxima) ffib(n):=prod(fib(k), k, 1, n);
fibonomial(n, k):=ffib(n)/(ffib(k)*ffib(n-k));
create_list(fibonomial(n, k), n, 0, 20, k, 0, n); /* Emanuele Munarini, Apr 02 2012 */
(PARI) T(n, k) = prod(j=0, k-1, fibonacci(n-j))/prod(j=1, k, fibonacci(j));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
(Magma)
Fibonomial:= func< n, k | k eq 0 select 1 else (&*[Fibonacci(n-j+1)/Fibonacci(j): j in [1..k]]) >;
[Fibonomial(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 20 2024
(SageMath)
def fibonomial(n, k): return 1 if k==0 else product(fibonacci(n-j+1)/fibonacci(j) for j in range(1, k+1))
flatten([[fibonomial(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 20 2024
CROSSREFS
KEYWORD
AUTHOR
STATUS
approved