proposed
approved
proposed
approved
editing
proposed
(PARI) {a(n, m=1)=sum(k=0, n, binomial(n, k)*m*(n+m)^(k-1)*k^(n-k))};
{L(n)=if(n<1, 0, sum(k=1, n, binomial(n, k)*n^(k-1)*k^(n-k)))};
a(n,m) = Sum_{k=0..n} Cbinomial(n,k) * m*(n+m)^(k-1) * k^(n-k).
L(n) = Sum_{k=0..n} Cbinomial(n,k) * n^(k-1) * k^(n-k) where
E.g.f. satisfies: A(x) = exp( x*A(x) * exp(x*A(x)) ).
a(n) = Sum_{k=0..n} Cbinomial(n,k) * (n+1)^(k-1) * k^(n-k).
Seiichi Manyama, <a href="/A162695/b162695.txt">Table of n, a(n) for n = 0..361</a>
approved
editing
editing
approved
R Lorentz, S Tringali, CH Yan, Generalized Goncarov polynomials, arXiv preprint arXiv:1511.04039, 2015
R Lorentz, S Tringali, CH Yan, <a href="http://arxiv.org/abs/1511.04039">Generalized Goncarov polynomials</a>, arXiv preprint arXiv:1511.04039, 2015
approved
editing
editing
approved
R Lorentz, S Tringali, CH Yan, Generalized Goncarov polynomials, arXiv preprint arXiv:1511.04039, 2015
approved
editing