OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..361
R Lorentz, S Tringali, CH Yan, Generalized Goncarov polynomials, arXiv preprint arXiv:1511.04039, 2015
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * (n+1)^(k-1) * k^(n-k).
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n! with a(0,m)=1, then
a(n,m) = Sum_{k=0..n} binomial(n,k) * m*(n+m)^(k-1) * k^(n-k).
...
Let log(A(x)) = x*A(x)*exp(x*A(x)) = Sum_{n>=1} L(n)*x^n/n!, then
L(n) = Sum_{k=0..n} binomial(n,k) * n^(k-1) * k^(n-k) where
...
a(n) ~ s*sqrt((1+r*s)/(1+r*s*(3+r*s))) * n^(n-1) / (exp(n)*r^n), where r = 0.2222181377976171017... and s = 1.998622764215824983... are roots of the system of equations exp(r*s)*r*s*(1+r*s) = 1, exp(exp(r*s)*r*s) = s. - Vaclav Kotesovec, Jul 15 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 549*x^4/4! + 9341*x^5/5! +...
exp(x*A(x)) = 1 + x + 3*x^2/2! + 22*x^3/3! + 257*x^4/4! + 4136*x^5/5! +...
Log(A(x)) = x + 4*x^2/2! + 30*x^3/3! + 356*x^4/4! + 5780*x^5/5! +...;
compare log(A(x)) to the e.g.f. of A055779 given by:
x + 2*x^2/2! + 10*x^3/3! + 89*x^4/4! + 1156*x^5/5! +...
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n, k] * (n+1)^(k-1) * k^(n-k), {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Jul 15 2014 *)
PROG
(PARI) a(n, m=1)=sum(k=0, n, binomial(n, k)*m*(n+m)^(k-1)*k^(n-k));
(PARI) /* Log(A(x)) = Sum_{n>=1} L(n)*x^n/n! where: */
L(n)=if(n<1, 0, sum(k=1, n, binomial(n, k)*n^(k-1)*k^(n-k)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 10 2009
STATUS
approved