login

Revision History for A158858

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Triangle T(n,k) =3^(k-1)*e(n,k) read by rows, where e(n,k)= (e(n - 1, k)*e(n, k - 1) + 1)/e(n - 1, k - 1).
(history; published version)
#2 by Charles R Greathouse IV at Fri Oct 12 14:54:56 EDT 2012
AUTHOR

_Roger L. Bagula _ and _Gary W. Adamson (rlbagulatftn(AT)yahoo.com), _, Mar 28 2009

Discussion
Fri Oct 12
14:54
OEIS Server: https://oeis.org/edit/global/1840
#1 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

Triangle T(n,k) =3^(k-1)*e(n,k) read by rows, where e(n,k)= (e(n - 1, k)*e(n, k - 1) + 1)/e(n - 1, k - 1).

DATA

3, 5, 1, 7, 2, 27, 9, 3, 54, 9, 11, 4, 81, 18, 243, 13, 5, 108, 27, 486, 81, 15, 6, 135, 36, 729, 162, 2187, 17, 7, 162, 45, 972, 243, 4374, 729, 19, 8, 189, 54, 1215, 324, 6561, 1458, 19683, 21, 9, 216, 63, 1458, 405, 8748, 2187, 39366, 6561

OFFSET

1,1

REFERENCES

H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, NY, 1973, pp 159-162.

FORMULA

Row sums are (5-(-1)^n)*3^n/4-3*n/2.

T(n,k) = 3^(k-1)*e(n,k) where e(n,k)= ( 1+e(n-1,k)*e(n,k-1) )/e(n-1,k-1) and e(n,1)=2*n+1 define a triangle of fractions.

EXAMPLE

{3},

{5, 1},

{7, 2, 27},

{9, 3, 54, 9},

{11, 4, 81, 18, 243},

{13, 5, 108, 27, 486, 81},

{15, 6, 135, 36, 729, 162, 2187},

{17, 7, 162, 45, 972, 243, 4374, 729},

{19, 8, 189, 54, 1215, 324, 6561, 1458, 19683},

{21, 9, 216, 63, 1458, 405, 8748, 2187, 39366, 6561}

MATHEMATICA

Clear[e, n, k];

e[n_, 0] := 2*n + 1;

e[n_, k_] := 0 /; k >= n;

e[n_, k_] := (e[n - 1, k]*e[n, k - 1] + 1)/e[n - 1, k - 1];

Table[Table[3^k*e[n, k], {k, 0, n - 1}], {n, 1, 10}];

Flatten[%]

CROSSREFS
KEYWORD

nonn,tabl

AUTHOR

Roger L. Bagula and Gary W. Adamson (rlbagulatftn(AT)yahoo.com), Mar 28 2009

EXTENSIONS

Edited by the Associate Editors of the OEIS, Apr 22 2009

STATUS

approved