OFFSET
1,1
REFERENCES
H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, NY, 1973, pp 159-162.
FORMULA
Row sums are (5-(-1)^n)*3^n/4-3*n/2.
T(n,k) = 3^(k-1)*e(n,k) where e(n,k)= ( 1+e(n-1,k)*e(n,k-1) )/e(n-1,k-1) and e(n,1)=2*n+1 define a triangle of fractions.
EXAMPLE
{3},
{5, 1},
{7, 2, 27},
{9, 3, 54, 9},
{11, 4, 81, 18, 243},
{13, 5, 108, 27, 486, 81},
{15, 6, 135, 36, 729, 162, 2187},
{17, 7, 162, 45, 972, 243, 4374, 729},
{19, 8, 189, 54, 1215, 324, 6561, 1458, 19683},
{21, 9, 216, 63, 1458, 405, 8748, 2187, 39366, 6561}
MATHEMATICA
Clear[e, n, k];
e[n_, 0] := 2*n + 1;
e[n_, k_] := 0 /; k >= n;
e[n_, k_] := (e[n - 1, k]*e[n, k - 1] + 1)/e[n - 1, k - 1];
Table[Table[3^k*e[n, k], {k, 0, n - 1}], {n, 1, 10}];
Flatten[%]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula and Gary W. Adamson, Mar 28 2009
EXTENSIONS
Edited by the Associate Editors of the OEIS, Apr 22 2009
STATUS
approved