editing
approved
editing
approved
a(n)=(1/2)*(2+sqrt(10))^n-(13/20)*(2-sqrt(10))^n*sqrt(10)+(13/20)*(2+sqrt(10))^n*sqrt(10)+(1/2)*(2-sqrt(10))^n. - Paolo P. Lava, Jun 03 2008
approved
editing
editing
approved
a(n)=(1/2)*(2+sqrt(10))^n-(13/20)*(2-sqrt(10))^n*sqrt(10)+(13/20)*(2+sqrt(10))^n*sqrt(10)+(1/2)*(2-sqrt(10))^n . - Paolo P. Lava, Jun 03 2008
a(4) = 244 = upper left term in [1,3; 3,3]^4.
a = {1, 10}; Do[AppendTo[a, 4*a[[ -1]] + 6*a[[ -2]]], {25}]; a - _(* _Stefan Steinerberger_ *)
approved
editing
editing
approved
<a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4, 6).
approved
editing
editing
approved
Harvey P. Dale, <a href="/A138041/b138041.txt">Table of n, a(n) for n = 1..1000</a>
approved
editing
editing
approved
LinearRecurrence[{4, 6}, {1, 10}, 30] (* Harvey P. Dale, Mar 09 2014 *)
approved
editing