login
A138041
a(1) = 1, a(2) = 10; for n>2, a(n+1) = 4*a(n) + 6*a(n-1). Also a(n) = upper left term in the 2 X 2 matrix [1,3; 3,3].
1
1, 10, 46, 244, 1252, 6472, 33400, 172432, 890128, 4595104, 23721184, 122455360, 632148544, 3263326336, 16846196608, 86964744448, 448936157440, 2317533096448, 11963749330432, 61760195900416, 318823279584256
OFFSET
1,2
FORMULA
a(n)/a(n-1) tends to (2 + sqrt(10)) = 5.16227766... (a root of x^2 - 4*x - 6 and an eigenvalue of the matrix).
a(n) mod 9 == 1.
O.g.f.: -x*(1+6*x)/(-1+4*x+6*x^2). a(n) = A085939(n)+6*A085939(n-1). - R. J. Mathar, Mar 03 2008
From the characteristic polynomial of the matrix we get g.f.: (6*x + 1)/(-6*x^2 - 4*x + 1), with roots a=-(2+sqrt(10))/6, b=-(2-sqrt(10))/6. Let A=3+3*sqrt(10)/10 and B=3-3*sqrt(10)/10. Then a(n) = (A*(1/a)^n + B*(1/b)^n)/6. - Lambert Herrgesell (zero815(AT)googlemail.com), Apr 04 2008
EXAMPLE
a(4) = 244 = 4*46 + 6*10 = 4*a(3) + 6*a(2).
a(4) = 244 = upper left term in [1,3; 3,3]^4.
MATHEMATICA
a = {1, 10}; Do[AppendTo[a, 4*a[[ -1]] + 6*a[[ -2]]], {25}]; a (* Stefan Steinerberger *)
LinearRecurrence[{4, 6}, {1, 10}, 30] (* Harvey P. Dale, Mar 09 2014 *)
CROSSREFS
Sequence in context: A115712 A199313 A003765 * A351901 A219597 A000832
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Mar 02 2008
EXTENSIONS
More terms from Stefan Steinerberger and R. J. Mathar, Mar 02 2008
Definition corrected by Paolo P. Lava, Jun 03 2008
STATUS
approved