_Paolo P. Lava & _ and _Giorgio Balzarotti (paoloplava(AT)gmail.com), _, Nov 26 2007
_Paolo P. Lava & _ and _Giorgio Balzarotti (paoloplava(AT)gmail.com), _, Nov 26 2007
Terms a(7) onward from _Max Alekseyev (maxale(AT)gmail.com), _, Sep 24 2011
Paolo P. Lava & Giorgio Balzarotti (pplpaoloplava(AT)splgmail.atcom), Nov 26 2007
editing
approved
Positive integers n such that A195860(n)=16.
approved
editing
editing
approved
3780, 10050, 15750, 32760, 37800, 39060, 100500, 153720, 157500, 203280, 267960, 327600, 378000, 387720, 390600, 460350, 630630, 1005000, 1032570, 1537200, 1575000, 2032800, 2679600, 3276000, 3575880, 3780000, 3877200, 3906000, 4603500, 4696230
Is it the sequence finite?
easy,nonn,base
Terms a(7) onward from Max Alekseyev (maxale(AT)gmail.com), Sep 24 2011
approved
editing
Numbers n that raised to the powers from 1 to k (with k>=1) are multiple of the sum of their digits (n raised to k+1 must not be a multiple). Case k=15.
3780, 10050, 15750, 32760, 37800, 39060
1,1
Is it the sequence finite?
3780^1=3780 is multiple of Sum_digits(3780)=18
3780^2=14288400 is multiple of Sum_digits(14288400)=27
...
3780^15=459596801440358960392275509579197612032000000000000000 is a multiple of Sum_digits(459596801440358960392275509579197612032000000000000000)=180
while
3780^16=1737275909444556870282801426209366973480960000000000000000 is not multiple of Sum_digits(1737275909444556870282801426209366973480960000000000000000)=198
readlib(log10); P:=proc(n, m) local a, i, k, w, x, ok; for i from 1 by 1 to n do a:=simplify(log10(i)); if not (trunc(a)=a) then ok:=1; x:=1; while ok=1 do w:=0; k:=i^x; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; if trunc(i^x/w)=i^x/w then x:=x+1; else if x-1=m then print(i); fi; ok:=0; fi; od; fi; od; end: P(40000, 15);
easy,nonn,base,new
Paolo P. Lava & Giorgio Balzarotti (ppl(AT)spl.at), Nov 26 2007
approved