OFFSET
1,1
FORMULA
Positive integers n such that A195860(n)=16.
EXAMPLE
3780^1=3780 is multiple of Sum_digits(3780)=18
3780^2=14288400 is multiple of Sum_digits(14288400)=27
...
3780^15=459596801440358960392275509579197612032000000000000000 is a multiple of Sum_digits(459596801440358960392275509579197612032000000000000000)=180
while
3780^16=1737275909444556870282801426209366973480960000000000000000 is not multiple of Sum_digits(1737275909444556870282801426209366973480960000000000000000)=198
MAPLE
readlib(log10); P:=proc(n, m) local a, i, k, w, x, ok; for i from 1 by 1 to n do a:=simplify(log10(i)); if not (trunc(a)=a) then ok:=1; x:=1; while ok=1 do w:=0; k:=i^x; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; if trunc(i^x/w)=i^x/w then x:=x+1; else if x-1=m then print(i); fi; ok:=0; fi; od; fi; od; end: P(40000, 15);
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava and Giorgio Balzarotti, Nov 26 2007
EXTENSIONS
Terms a(7) onward from Max Alekseyev, Sep 24 2011
STATUS
approved