(Sage) [lucas_number2(n, 1, 3) for n in xrangerange(1, 34)] # Zerinvary Lajos, May 14 2009
(Sage) [lucas_number2(n, 1, 3) for n in xrangerange(1, 34)] # Zerinvary Lajos, May 14 2009
proposed
approved
editing
proposed
a(n) = (1/2+1/2*Ii*sqrt(11))^n + (1/2-1/2*Ii*sqrt(11))^n, where Ii=sqrt(-1).
approved
editing
editing
approved
a(n) = (1/2+1/2*I*sqrt(11))^n + (1/2-1/2*I*sqrt(11))^n, where I=sqrt(-1).
proposed
editing
editing
proposed
(Sage) [lucas_number2(n, 1, 3) for n in xrange(1, 34)] # [From __Zerinvary Lajos_, May 14 2009]
proposed
editing
editing
proposed
Essentially the Lucas sequence V(1,3). - Peter Bala, Jun 23 2015
Wikipedia, <a href="http://en.wikipedia.org/wiki/Lucas_sequence">Lucas sequence</a>
a(n) = a(n-1) - 3*a(n-2); G.f. (1 - 6*x)/(1 - x + 3*x^2+1-x).
a(n) = [x^n] ( (1 + x + sqrt(1 + 2*x - 11*x^2))/2 )^n. - Peter Bala, Jun 23 2015
approved
editing