login
A131040
a(n) = (1/2+1/2*i*sqrt(11))^n + (1/2-1/2*i*sqrt(11))^n, where i=sqrt(-1).
3
1, -5, -8, 7, 31, 10, -83, -113, 136, 475, 67, -1358, -1559, 2515, 7192, -353, -21929, -20870, 44917, 107527, -27224, -349805, -268133, 781282, 1585681, -758165, -5515208, -3240713, 13304911, 23027050, -16887683, -85968833, -35305784
OFFSET
0,2
COMMENTS
Generating floretion is 1.5i' + .5j' + .5k' + .5e whereas in A131039 it is 'i + .5i' + .5j' + .5k' + .5e
Essentially the Lucas sequence V(1,3). - Peter Bala, Jun 23 2015
FORMULA
a(n) = a(n-1) - 3*a(n-2); G.f. (1 - 6*x)/(1 - x + 3*x^2).
a(n) = [x^n] ( (1 + x + sqrt(1 + 2*x - 11*x^2))/2 )^n. - Peter Bala, Jun 23 2015
MAPLE
Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[ 1.5i' + .5j' + .5k' + .5e]
PROG
(Sage) [lucas_number2(n, 1, 3) for n in range(1, 34)] # Zerinvary Lajos, May 14 2009
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Jun 11 2007
STATUS
approved