login

Revision History for A126796

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Number of complete partitions of n.
(history; published version)
#90 by Michael De Vlieger at Sun Oct 15 09:26:31 EDT 2023
STATUS

proposed

approved

#89 by Gus Wiseman at Sun Oct 15 06:22:12 EDT 2023
STATUS

editing

proposed

#88 by Gus Wiseman at Sun Oct 15 06:09:22 EDT 2023
CROSSREFS

A000041 counts integer partitions, strict A000009.

A046663 counts partitions w/o a submultiset summing to k, strict A365663.

A365543 counts partitions with a submultiset summing to k, strict A365661.

Cf. A000041, A018818, A046663, A047967, A276024, A304792, A325799, A365543, A365658, A365918, A365921.

#87 by Gus Wiseman at Sun Oct 15 01:59:30 EDT 2023
CROSSREFS

For parts instead of sums we have A000009, (sc. coverings), ranks A055932.

A276024 counts positive subset-sums of partitions, strict A284640.

`A325799 counts non-subset-sums of prime indices.

A364350 counts combination-free strict partitions.

Cf. A018818, A047967, `A264401, `A299701, A276024, A304792, `A364272, `A365545, A325799, A365658, A365918, A365921.

#86 by Gus Wiseman at Sat Oct 14 23:40:49 EDT 2023
#85 by Gus Wiseman at Sat Oct 14 23:34:54 EDT 2023
FORMULA

a(n) = A000041(n) - A365924(n). - Gus Wiseman, Oct 14 2023

EXAMPLE

From Gus Wiseman, Oct 14 2023: (Start)

The a(1) = 1 through a(8) = 10 partitions:

(1) (11) (21) (211) (221) (321) (421) (3221)

(111) (1111) (311) (2211) (2221) (3311)

(2111) (3111) (3211) (4211)

(11111) (21111) (4111) (22211)

(111111) (22111) (32111)

(31111) (41111)

(211111) (221111)

(1111111) (311111)

(2111111)

(11111111)

(End)

MATHEMATICA

nmz[y_]:=Complement[Range[Total[y]], Total/@Subsets[y]]; Table[Length[Select[IntegerPartitions[n], nmz[#]=={}&]], {n, 0, 15}] (* Gus Wiseman, Oct 14 2023 *)

CROSSREFS

Cf. A002033, A003513, A188431, A209405, A261036, A286929, A286097.

For parts instead of sums we have A000009, ranks A055932.

The strict case is A188431, complement A365831.

These partitions have ranks A325781.

First column k = 0 of A365923.

The complement is counted by A365924, ranks A365830.

A000041 counts integer partitions, strict A000009.

A046663 counts partitions w/o a submultiset summing to k, strict A365663.

A276024 counts positive subset-sums of partitions, strict A284640.

`A325799 counts non-subset-sums of prime indices.

A364350 counts combination-free strict partitions.

A365543 counts partitions with a submultiset summing to k, strict A365661.

Cf. A002865, A006827, A018818, A047967, A080259, A264401, A299701, A304792, A364272, A365545, A365658, A365918, A365919, A365921.

STATUS

approved

editing

#84 by Joerg Arndt at Wed Sep 06 01:12:03 EDT 2023
STATUS

proposed

approved

#83 by Michael De Vlieger at Tue Sep 05 23:33:23 EDT 2023
STATUS

editing

proposed

#82 by Michael De Vlieger at Tue Sep 05 23:33:22 EDT 2023
LINKS

Nathaniel Johnston and Sarah Plosker, <a href="https://arxiv.org/abs/2308.15611">Laplacian {-1,0,1}- and {-1,1}-diagonalizable graphs</a>, arXiv:2308.15611 [math.CO], 2023.

STATUS

approved

editing

#81 by Hugo Pfoertner at Fri Jun 30 02:41:36 EDT 2023
STATUS

reviewed

approved