login
A018818
Number of partitions of n into divisors of n.
108
1, 2, 2, 4, 2, 8, 2, 10, 5, 11, 2, 45, 2, 14, 14, 36, 2, 81, 2, 92, 18, 20, 2, 458, 7, 23, 23, 156, 2, 742, 2, 202, 26, 29, 26, 2234, 2, 32, 30, 1370, 2, 1654, 2, 337, 286, 38, 2, 9676, 9, 407, 38, 454, 2, 3132, 38, 3065, 42, 47, 2, 73155, 2, 50, 493, 1828, 44, 5257, 2, 740, 50, 5066
OFFSET
1,2
COMMENTS
From Reinhard Zumkeller, Dec 11 2009: (Start)
For odd primes p: a(p^2) = p + 2; for n > 1: a(A001248(n)) = A052147(n);
For odd primes p > 3, a(3*p) = 2*p + 4; for n > 2: a(A001748(n)) = A100484(n) + 4. (End)
From Matthew Crawford, Jan 19 2021: (Start)
For a prime p, a(p^3) = (p^3 + p^2 + 2*p + 4)/2;
For distinct primes p and q, a(p*q) = (p+1)*(q+1)/2 + 2. (End)
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Douglas Bowman et al., Problem 6640: Partitions of n into parts which are divisors of n, American Mathematical Monthly, 99(3) (1992), 276-277.
Hansraj Gupta, Partitions of n into divisors of m, Indian J. Pure Appl. Math., 6(11) (1975), 1276-1286.
Hansraj Gupta, Partitions of n into divisors of m, Indian J. Pure Appl. Math., 6(11) (1975), 1276-1286.
Noah Lebowitz-Lockard and Joseph Vandehey, On the number of partitions of a number into distinct divisors, arXiv:2402.08119 [math.NT], 2024. See p. 1.
Rémy Sigrist, Colored logarithmic scatterplot of the first 10000 terms (where the color is function of A000005(n)).
FORMULA
Coefficient of x^n in the expansion of 1/Product_{d|n} (1-x^d). - Vladeta Jovovic, Sep 28 2002
a(n) = 2 iff n is prime. - Juhani Heino, Aug 27 2009
a(n) = f(n,n,1), where f(n,m,k) = f(n,m,k+1) + f(n,m-k,k)*0^(n mod k) if k <= m, otherwise 0^m. - Reinhard Zumkeller, Dec 11 2009
Paul Erdős, Andrew M. Odlyzko, and the Editors of the AMM give bounds; see Bowman et al. - Charles R Greathouse IV, Dec 04 2012
EXAMPLE
The a(6) = 8 representations of 6 are 6 = 3 + 3 = 3 + 2 + 1 = 3 + 1 + 1 + 1 = 2 + 2 + 2 = 2 + 2 + 1 + 1 = 2 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1.
MAPLE
A018818 := proc(n)
local a, p, w, el ;
a := 0 ;
for p in combinat[partition](n) do
w := true ;
for el in p do
if modp(n, el) <> 0 then
w := false;
break;
end if;
end do:
if w then
a := a+1 ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Mar 30 2017
MATHEMATICA
Table[d = Divisors[n]; Coefficient[Series[1/Product[1 - x^d[[i]], {i, Length[d]}], {x, 0, n}], x, n], {n, 100}] (* T. D. Noe, Jul 28 2011 *)
PROG
(Haskell)
a018818 n = p (init $ a027750_row n) n + 1 where
p _ 0 = 1
p [] _ = 0
p ks'@(k:ks) m | m < k = 0
| otherwise = p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Apr 02 2012
(PARI) a(n)=numbpartUsing(n, divisors(n));
numbpartUsing(n, v, mx=#v)=if(n<1, return(n==0)); sum(i=1, mx, numbpartUsing(n-v[i], v, i)) \\ inefficient; Charles R Greathouse IV, Jun 21 2017
(Magma) [#RestrictedPartitions(n, {d:d in Divisors(n)}): n in [1..100]]; // Marius A. Burtea, Jan 02 2019
CROSSREFS
Cf. A002577, A027750, A033630, A161148 (partitions in squared divisors), A171565, A210442, A211110, A225244,
Sequence in context: A350062 A100577 A328710 * A157019 A359906 A067538
KEYWORD
nonn,nice,look
STATUS
approved