(MAGMAMagma) [[(&+[ 2^j*Binomial(n, j)*Binomial(2*n-k-j, n)*(4-9*j+3*j^2-6*(j-1)*n + 2*n^2)/((n-j+2)*(n-j+1))/2: j in [0..(n-k)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 02 2018
(MAGMAMagma) [[(&+[ 2^j*Binomial(n, j)*Binomial(2*n-k-j, n)*(4-9*j+3*j^2-6*(j-1)*n + 2*n^2)/((n-j+2)*(n-j+1))/2: j in [0..(n-k)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 02 2018
reviewed
approved
proposed
reviewed
editing
proposed
Riordan array (2-2*x-sqrt(1-8*x+4*x^2), (1-2*x-sqrt(1-8*x+4*x^2))/2).
Inverse of Riordan array (1/(1+2*x), x*(1-x)/(1+2*x)).
Triangle T(n,k), 0 <= k <= n, read by rows, given by [2, 1, 3, 1, 3, 1, 3, 1, 3, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938 . - Philippe Deléham, Aug 09 2006
T(n,k) = [x^(n-k)](1-2*x-2*x^2)*(1+2*x)^n/(1-x)^(n+1) = (1/2)*Sum(_{i=0..n-k, } binomial(n,i) * binomial(2*n-k-i,n) * (4 - 9*i + 3*i^2 - 6*(i-1)*n + 2*n^2)/((n-i+2)*(n-i+1))*2^i)/2. - Emanuele Munarini, May 18 2011
1;
2, 1;
6, 5, 1;
24, 24, 8, 1;
114, 123, 51, 11, 1;
600, 672, 312, 87, 14, 1;
3372, 3858, 1914, 618, 132, 17, 1,;
2,1,
6,5,1,
24,24,8,1,
114,123,51,11,1,
600,672,312,87,14,1,
3372,3858,1914,618,132,17,1
approved
editing
proposed
approved
editing
proposed
1, 2, 1, 6, 5, 1, 24, 24, 8, 1, 114, 123, 51, 11, 1, 600, 672, 312, 87, 14, 1, 3372, 3858, 1914, 618, 132, 17, 1, 19824, 22992, 11904, 4218, 1068, 186, 20, 1, 120426, 140991, 75183, 28383, 8043, 1689, 249, 23, 1, 749976, 884112, 481704, 190347, 58398, 13929, 2508, 321, 26, 1
1,
2,1,
6,5,1,
24,24,8,1,
114,123,51,11,1,
600,672,312,87,14,1,
3372,3858,1914,618,132,17,1
Contribution from _From _Paul Barry_, Apr 27 2009: (Start)
2, 1,
2, 3, 1,
2, 3, 3, 1,
2, 3, 3, 3, 1,
2, 3, 3, 3, 3, 1,
2, 3, 3, 3, 3, 3, 1,
2, 3, 3, 3, 3, 3, 3, 1
-r, 1,
-r, 1 - r, 1,
-r, 1 - r, 1 - r, 1,
-r, 1 - r, 1 - r, 1 - r, 1,
-r, 1 - r, 1 - r, 1 - r, 1 - r, 1,
-r, 1 - r, 1 - r, 1 - r, 1 - r, 1 - r, 1,
-r, 1 - r, 1 - r, 1 - r, 1 - r, 1 - r, 1 - r, 1 (End)
proposed
editing
editing
proposed