login
A121576
Riordan array (2-2*x-sqrt(1-8*x+4*x^2), (1-2*x-sqrt(1-8*x+4*x^2))/2).
6
1, 2, 1, 6, 5, 1, 24, 24, 8, 1, 114, 123, 51, 11, 1, 600, 672, 312, 87, 14, 1, 3372, 3858, 1914, 618, 132, 17, 1, 19824, 22992, 11904, 4218, 1068, 186, 20, 1, 120426, 140991, 75183, 28383, 8043, 1689, 249, 23, 1, 749976, 884112, 481704, 190347, 58398, 13929, 2508, 321, 26, 1
OFFSET
0,2
COMMENTS
Inverse of Riordan array (1/(1+2*x), x*(1-x)/(1+2*x)).
Row sums are A047891; first column is A054872. Signed version given by A121575.
Triangle T(n,k), 0 <= k <= n, read by rows, given by [2, 1, 3, 1, 3, 1, 3, 1, 3, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 09 2006
FORMULA
T(n,k) = [x^(n-k)](1-2*x-2*x^2)*(1+2*x)^n/(1-x)^(n+1) = (1/2)*Sum_{i=0..n-k} binomial(n,i) * binomial(2*n-k-i,n) * (4 - 9*i + 3*i^2 - 6*(i-1)*n + 2*n^2)/((n-i+2)*(n-i+1))*2^i. - Emanuele Munarini, May 18 2011
EXAMPLE
Triangle begins
1;
2, 1;
6, 5, 1;
24, 24, 8, 1;
114, 123, 51, 11, 1;
600, 672, 312, 87, 14, 1;
3372, 3858, 1914, 618, 132, 17, 1;
From Paul Barry, Apr 27 2009: (Start)
Production matrix is
2, 1,
2, 3, 1,
2, 3, 3, 1,
2, 3, 3, 3, 1,
2, 3, 3, 3, 3, 1,
2, 3, 3, 3, 3, 3, 1,
2, 3, 3, 3, 3, 3, 3, 1
In general, the production matrix of the inverse of (1/(1-rx),x(1-x)/(1-rx)) is
-r, 1,
-r, 1 - r, 1,
-r, 1 - r, 1 - r, 1,
-r, 1 - r, 1 - r, 1 - r, 1,
-r, 1 - r, 1 - r, 1 - r, 1 - r, 1,
-r, 1 - r, 1 - r, 1 - r, 1 - r, 1 - r, 1,
-r, 1 - r, 1 - r, 1 - r, 1 - r, 1 - r, 1 - r, 1 (End)
MATHEMATICA
Flatten[Table[Sum[Binomial[n, i]Binomial[2n-k-i, n](4-9i+3i^2-6(i-1)n+2n^2)/((n-i+2)(n-i+1))2^i, {i, 0, n-k}]/2, {n, 0, 8}, {k, 0, n}]]
(* Emanuele Munarini, May 18 2011 *)
PROG
(Maxima) create_list(sum(binomial(n, i)*binomial(2*n-k-i, n)*(4-9*i+3*i^2-6*(i-1)*n+2*n^2)/((n-i+2)*(n-i+1))*2^i, i, 0, n-k)/2, n, 0, 8, k, 0, n); /* Emanuele Munarini, May 18 2011 */
(PARI) for(n=0, 10, for(k=0, n, print1(sum(j=0, n-k, 2^j*binomial(n, j) *binomial(2*n-k-j, n)*(4-9*j+3*j^2-6*(j-1)*n + 2*n^2)/((n-j+2)*(n-j+1)))/2, ", "))) \\ G. C. Greubel, Nov 02 2018
(Magma) [[(&+[ 2^j*Binomial(n, j)*Binomial(2*n-k-j, n)*(4-9*j+3*j^2-6*(j-1)*n + 2*n^2)/((n-j+2)*(n-j+1))/2: j in [0..(n-k)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 02 2018
CROSSREFS
Sequence in context: A179456 A214152 A121575 * A049444 A136124 A143491
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Aug 08 2006
STATUS
approved