login

Revision History for A114199

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Row sums of a Pascal-Fibonacci triangle.
(history; published version)
#19 by Alois P. Heinz at Fri Oct 25 07:14:23 EDT 2024
STATUS

editing

approved

#18 by Alois P. Heinz at Fri Oct 25 07:14:15 EDT 2024
CROSSREFS
STATUS

proposed

editing

#17 by G. C. Greubel at Wed Oct 23 02:26:08 EDT 2024
STATUS

editing

proposed

#16 by G. C. Greubel at Wed Oct 23 02:25:56 EDT 2024
LINKS

<a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,2,1).

FORMULA

G.f.: (1-x)^2/(1-4x4*x+5x5*x^2-2x2*x^3-x^4);.

a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(n-k, j)*C(k, j)*FFibonacci(j);.

a(n) = Sum_{k=0..n} C(n, k)*FFibonacci(floor((k+2)/2)).

PROG

(Magma) [n le 4 select 2^(n-1) else 4*Self(n-1) -5*Self(n-2) +2*Self(n-3) +Self(n-4): n in [1..30]]; // G. C. Greubel, Oct 23 2024

(SageMath)

@CachedFunction # a = A114199

def a(n): return 2^n if n<4 else 4*a(n-1) -5*a(n-2) +2*a(n-3) +a(n-4)

[a(n) for n in range(71)] # G. C. Greubel, Oct 23 2024

CROSSREFS

Cf. A000045.

STATUS

approved

editing

#15 by Alois P. Heinz at Wed Jan 22 15:06:22 EST 2020
STATUS

proposed

approved

#14 by Michael De Vlieger at Wed Jan 22 15:03:51 EST 2020
STATUS

editing

proposed

#13 by Michael De Vlieger at Wed Jan 22 15:03:49 EST 2020
LINKS

Sergio Falcón, <a href="httphttps://doiwww.rgnpublications.orgcom/journals/10index.26713php/cma.v10i3./article/viewFile/1221/950">Binomial Transform of the Generalized k-Fibonacci Numbers</a>, Communications in Mathematics and Applications (2019) Vol. 10, No. 3, 643-651.

STATUS

proposed

editing

#12 by Jon E. Schoenfield at Wed Jan 22 11:36:56 EST 2020
STATUS

editing

proposed

Discussion
Wed Jan 22
12:01
Michel Marcus: the doi link does not work
#11 by Jon E. Schoenfield at Wed Jan 22 11:36:53 EST 2020
FORMULA

G.f.: (1-x)^2/(1-4x+5x^2-2x^3-x^4); a(n)=sum{k=0..n, sum{j=0..n-k, C(n-k, j)C(k, j)F(j)}}; a(n)=sum{k=0..n, C(n, k)F(floor((k+2)/2))}.

G.f.: (1-x)^2/(1-4x+5x^2-2x^3-x^4);

a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(n-k, j)*C(k, j)*F(j);

a(n) = Sum_{k=0..n} C(n, k)*F(floor((k+2)/2)).

STATUS

proposed

editing

#10 by Michael De Vlieger at Wed Jan 22 11:34:56 EST 2020
STATUS

editing

proposed