login
A114199
Row sums of a Pascal-Fibonacci triangle.
2
1, 2, 4, 8, 17, 38, 87, 200, 458, 1044, 2373, 5388, 12233, 27782, 63112, 143392, 325805, 740266, 1681935, 3821412, 8682310, 19726316, 44818473, 101828344, 231355953, 525645354, 1194276812, 2713420728, 6164945513, 14006877390
OFFSET
0,2
COMMENTS
Binomial transform of double Fibonacci sequence A103609(n+2). Row sums of A114197.
LINKS
Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications (2019) Vol. 10, No. 3, 643-651.
FORMULA
G.f.: (1-x)^2/(1-4*x+5*x^2-2*x^3-x^4).
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(n-k, j)*C(k, j)*Fibonacci(j).
a(n) = Sum_{k=0..n} C(n, k)*Fibonacci(floor((k+2)/2)).
MATHEMATICA
LinearRecurrence[{4, -5, 2, 1}, {1, 2, 4, 8}, 30] (* Harvey P. Dale, Dec 07 2015 *)
PROG
(Magma) [n le 4 select 2^(n-1) else 4*Self(n-1) -5*Self(n-2) +2*Self(n-3) +Self(n-4): n in [1..30]]; // G. C. Greubel, Oct 23 2024
(SageMath)
@CachedFunction # a = A114199
def a(n): return 2^n if n<4 else 4*a(n-1) -5*a(n-2) +2*a(n-3) +a(n-4)
[a(n) for n in range(71)] # G. C. Greubel, Oct 23 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 16 2005
STATUS
approved