_Jonathan Vos Post (jvospost3(AT)gmail.com), _, Feb 03 2005
_Jonathan Vos Post (jvospost3(AT)gmail.com), _, Feb 03 2005
Edited, corrected and extended by Ray Chandler and _Robert G. Wilson v (rgwv(AT)rgwv.com), _, Feb 06 2005
Edited, corrected and extended by _Ray Chandler (rayjchandler(AT)sbcglobal.net) _ and Robert G. Wilson v (rgwv(AT)rgwv.com), Feb 06 2005
nonn,easy,new
Jonathan Vos Post (jvospost2jvospost3(AT)yahoogmail.com), Feb 03 2005
nonn,easy,new
Edited, corrected and extended by Ray Chandler (RayChandlerrayjchandler(AT)alumni.tcusbcglobal.edunet) and Robert G. Wilson v (rgwv(AT)rgwv.com), Feb 06 2005
Primes in A103375.
2, 3, 5, 7, 17, 31, 71, 127, 157, 227, 257, 293, 349, 419, 503, 1993, 7907, 26293, 29311, 34603, 67477, 3147311, 9159547, 973669469, 6797534657, 9627183689, 297222052181, 4530692779838851, 41748646469705167, 266359428042546661
1,1
17 is an element of this sequence because A103375(36) = 17.
k = 7; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Union[Select[Array[a, 475], PrimeQ]]
nonn,easy,new
Jonathan Vos Post (jvospost2(AT)yahoo.com), Feb 03 2005
Edited, corrected and extended by Ray Chandler (RayChandler(AT)alumni.tcu.edu) and Robert G. Wilson v (rgwv(AT)rgwv.com), Feb 06 2005
approved