login
A103391
"Even" fractal sequence for the natural numbers: Deleting every even-indexed term results in the same sequence.
21
1, 2, 2, 3, 2, 4, 3, 5, 2, 6, 4, 7, 3, 8, 5, 9, 2, 10, 6, 11, 4, 12, 7, 13, 3, 14, 8, 15, 5, 16, 9, 17, 2, 18, 10, 19, 6, 20, 11, 21, 4, 22, 12, 23, 7, 24, 13, 25, 3, 26, 14, 27, 8, 28, 15, 29, 5, 30, 16, 31, 9, 32, 17, 33, 2, 34, 18, 35, 10, 36, 19, 37, 6, 38, 20, 39, 11, 40, 21, 41, 4, 42, 22, 43, 12, 44, 23, 45, 7, 46, 24, 47, 13, 48, 25, 49, 3, 50, 26, 51, 14, 52, 27, 53, 8
OFFSET
1,2
COMMENTS
A003602 is the "odd" fractal sequence for the natural numbers.
Lexicographically earliest infinite sequence such that a(i) = a(j) => A348717(A005940(i)) = A348717(A005940(j)) for all i, j >= 1. A365718 is an analogous sequence related to A356867 (Doudna variant D(3)). - Antti Karttunen, Sep 17 2023
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537 (terms 1..10000 from Reinhard Zumkeller)
FORMULA
For n > 1, a(n) = A003602(n-1) + 1. - Benoit Cloitre, May 26 2007, indexing corrected by Antti Karttunen, Feb 05 2020
a((2*n-3)*2^p+1) = n, p >= 0 and n >= 2, with a(1) = 1. - Johannes W. Meijer, Jan 28 2013
Sum_{k=1..n} a(k) ~ n^2/6. - Amiram Eldar, Sep 24 2023
MAPLE
nmax := 82: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 2 to ceil(nmax/(p+2))+1 do a((2*n-3)*2^p+1) := n od: od: a(1) := 1: seq(a(n), n=1..nmax); # Johannes W. Meijer, Jan 28 2013
MATHEMATICA
a[n_] := ((n-1)/2^IntegerExponent[n-1, 2] + 3)/2; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 24 2023 *)
PROG
(Haskell)
-- import Data.List (transpose)
a103391 n = a103391_list !! (n-1)
a103391_list = 1 : ks where
ks = concat $ transpose [[2..], ks]
-- Reinhard Zumkeller, May 23 2013
(PARI)
A003602(n) = (n/2^valuation(n, 2)+1)/2; \\ From A003602
A103391(n) = if(1==n, 1, (1+A003602(n-1))); \\ Antti Karttunen, Feb 05 2020
(Python)
def v(n): b = bin(n); return len(b) - len(b.rstrip("0"))
def b(n): return (n//2**v(n)+1)//2
def a(n): return 1 if n == 1 else 1 + b(n-1)
print([a(n) for n in range(1, 106)]) # Michael S. Branicky, May 29 2022
(Python)
def A103391(n): return (n-1>>(n-1&-n+1).bit_length())+2 if n>1 else 1 # Chai Wah Wu, Jan 04 2024
CROSSREFS
Cf. A003602, A005940, A025480, A220466, A286387, A353368 (Dirichlet inverse).
Cf. also A110962, A110963, A365718.
Differs from A331743(n-1) for the first time at n=192, where a(192) = 97, while A331743(191) = 23.
Differs from A351460.
Sequence in context: A323889 A286378 A331745 * A331743 A366802 A178804
KEYWORD
easy,nonn
AUTHOR
Eric Rowland, Mar 20 2005
EXTENSIONS
Data section extended up to a(105) (to better differentiate from several nearby sequences) by Antti Karttunen, Feb 05 2020
STATUS
approved