_Antti Karttunen (His_Firstname.His_Surname(AT)iki.fi), _, Nov 29 2003, Proposed by Wouter Meeussen, Spring 2003.
_Antti Karttunen (His_Firstname.His_Surname(AT)iki.fi), _, Nov 29 2003, Proposed by Wouter Meeussen, Spring 2003.
Antti Karttunen (His_Firstname.His_Surname(AT)iki.fi), Nov 29 2003, Proposed by _Wouter Meeussen (wouter.meeussen(AT)pandora.be), _, Spring 2003.
A. Karttunen, <a href="/A089408/a089408.c.txt">C-program for computing the initial terms of this sequence</a>
nonn,new
nonn
A. Karttunen, <a href="http://www.research.att.com/~njas/sequences/a089408.c.txt">C-program for computing the initial terms of this sequence</a>
nonn,new
nonn
A. Karttunen, <a href="http://www.research.att.com/~njas/sequences/gatomorfa089408.c.txt">C-program for computing the initial terms of this sequence</a>
nonn,new
nonn
The number of orbits to which the corresponding automorphism(s) partitions the set of A000108(n) binary trees of with n internal nodes.
nonn,new
nonn
1, 1, 1, 2, 7, 6, 10, 20, 37, 70, 130, 272, 480, 954, 1750, 3462, 6481, 12922, 24372, 48702, 92490
0,4
The number of orbits to which the corresponding automorphism(s) partitions the set of A000108(n) binary trees of n internal nodes.
Is the non-monotone notch from a(4)=7 to a(5)=6 the only one?
A. Karttunen, <a href="http://www.research.att.com/~njas/sequences/gatomorf.c.txt">C-program for computing the initial terms of this sequence</a>
Cf. A089411.
nonn
Antti Karttunen (His_Firstname.His_Surname(AT)iki.fi), Nov 29 2003, Proposed by Wouter Meeussen (wouter.meeussen(AT)pandora.be), Spring 2003.
approved