login
A089408
Number of fixed points in range [A014137(n-1)..A014138(n-1)] of permutation A089864.
90
1, 1, 2, 1, 2, 2, 4, 5, 10, 14, 28, 42, 84, 132, 264, 429, 858, 1430, 2860, 4862, 9724, 16796, 33592, 58786, 117572, 208012, 416024, 742900, 1485800, 2674440, 5348880, 9694845, 19389690, 35357670, 70715340, 129644790, 259289580, 477638700
OFFSET
0,3
COMMENTS
The number of n-node binary trees fixed by the corresponding automorphism(s). Essentially A000108 interleaved with A068875.
FORMULA
a(0)=1, a(2n) = 2*A000108(n-1), a(2n+1) = A000108(n)
G.f.: (1+4x-(1+2x)sqrt(1-4x^2))/(2x). - Paul Barry, Apr 11 2005
C(2*j,j)/(1+j)*i, i=1..2), j >= 0. - Zerinvary Lajos, Apr 29 2007
D-finite with recurrence: (n+1)*a(n) - 2*a(n-1) + 4(3-n)*a(n-2) = 0. - R. J. Mathar, Dec 17 2011, corrected by Georg Fischer, Feb 13 2020
MAPLE
seq(seq(binomial(2*j, j)/(1+j)*i, i=1..2), j=0..19); # Zerinvary Lajos, Apr 29 2007
MATHEMATICA
a[0] = 1; a[n_] := If[EvenQ[n], 2*CatalanNumber[n/2 - 1], CatalanNumber[(n-1)/2]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 24 2013 *)
PROG
(Scheme) (define (A089408 n) (cond ((zero? n) 1) ((even? n) (* 2 (A000108 (-1+ (/ n 2))))) (else (A000108 (/ (-1+ n) 2)))))
(Python)
from sympy import catalan
def a(n): return 1 if n==0 else 2*catalan(n//2 - 1) if n%2==0 else catalan((n - 1)//2) # Indranil Ghosh, May 23 2017
CROSSREFS
Cf. A089402.
Cf. A000108.
Sequence in context: A225044 A325246 A193691 * A350287 A208888 A258783
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Nov 29 2003
STATUS
approved