proposed
approved
proposed
approved
editing
proposed
(MAGMAMagma) [(3/2)^n*Factorial(2*n)/Factorial(n):n in [0..20]]; // Vincenzo Librandi, May 09 2012
B. Bodo Lass, <a href="http://dx.doi.org/10.1016/S0764-4442(01)02049-3">Démonstration combinatoire de la formule de Harer-Zagier</a>, (A combinatorial proof of the Harer-Zagier formula) C. R. Acad. Sci. Paris, Serie I, 333(3) (2001), 155-160.
B. Bodo Lass, <a href="httphttps://math.univ-lyon1doi.fr/~lass/articlesorg/pub3zagier10.html1016/S0764(, No. 3) (2001), pp. 155-160; <a href="http://math.univ-lyon1.fr/~lass/articles/pub3zagier.html">alternative
From Amiram Eldar, Feb 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + exp(1/6)*sqrt(Pi/6)*erf(1/sqrt(6)), where erf is the error function.
Sum_{n>=0} (-1)^n/a(n) = 1 - exp(-1/6)*sqrt(Pi/6)*erfi(1/sqrt(6)), where erfi is the imaginary error function. (End)
approved
editing
D-finite with recurrence: a(n) +3*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Jan 20 2018
editing
approved
D-finite: a(n) +3*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Jan 20 2018
approved
editing
proposed
approved