login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049308
Sextuple factorial numbers: Product_{k=0..n-1} (6*k+4).
11
1, 4, 40, 640, 14080, 394240, 13404160, 536166400, 24663654400, 1282510028800, 74385581670400, 4760677226905600, 333247405883392000, 25326802847137792000, 2076797833465298944000, 182758209344946307072000, 17179271678424952864768000, 1717927167842495286476800000
OFFSET
0,2
LINKS
FORMULA
E.g.f.: (1-6*x)^(-2/3).
a(n) = 2^n*A008544(n).
G.f.: 1/(1-4*x/(1-6*x/(1-10*x/(1-12*x/(1-16*x/(1-18*x/(1-22*x/(1-24*x/(1-28*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-2)^n*Sum_{k=0..n} 3^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: ( 1 - 1/Q(0) )/x/2 where Q(k) = 1 - x*(6*k-2)/(1 - x*(6*k+6)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
D-finite with recurrence: a(n) = 2*(3*n-1)*a(n-1). - R. J. Mathar, Jan 17 2020
From G. C. Greubel, Mar 29 2022: (Start)
a(n) = 6^n * Pochhammer(n, 2/3).
G.f.: Hypergeometric2F0([1, 2/3], [], 6*x). (End)
Sum_{n>=0} 1/a(n) = 1 + exp(1/6)*(Gamma(2/3) - Gamma(2/3, 1/6))/6^(1/3). - Amiram Eldar, Dec 18 2022
MATHEMATICA
Table[6^n*Pochhammer[2/3, n], {n, 0, 30}] (* G. C. Greubel, Mar 29 2022 *)
PROG
(Magma) [n le 2 select 4^(n-1) else 2*(3*n-1)*Self(n-1): n in [1..30]]; // G. C. Greubel, Mar 29 2022
(Sage) [6^n*rising_factorial(2/3, n) for n in (0..30)] # G. C. Greubel, Mar 29 2022
(PARI) a(n) = prod(k=0, n-1, 6*k+4); \\ Michel Marcus, Mar 30 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Joe Keane (jgk(AT)jgk.org)
STATUS
approved