login
A377442
Square array read by rising antidiagonals: T(n, k) = A377441(-n, k), an extension of A377441 into the domain of negative n.
2
1, 1, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 2, 4, 14, 1, 1, 2, 3, 9, 42, 1, 1, 2, 2, 6, 22, 132, 1, 1, 2, 1, 5, 12, 57, 429, 1, 1, 2, 0, 6, 6, 26, 154, 1430, 1, 1, 2, -1, 9, -2, 15, 59, 429, 4862, 1, 1, 2, -2, 14, -18, 24, 24, 138, 1223, 16796, 1, 1, 2, -3, 21, -48, 77, -23, 53, 332, 3550, 58786, 1, 1, 2, -4, 30, -98, 222, -226, 102, 107, 814, 10455, 208012, 1, 1, 2
OFFSET
0,6
COMMENTS
The main entry for this array is A377441.
EXAMPLE
The array begins:
[ 0] 1, 1, 2, 5, 14, 42, 132, 429, 1430, ... = A000108
[-1] 1, 1, 2, 4, 9, 22, 57, 154, 429, ... = A105633
[-2] 1, 1, 2, 3, 6, 12, 26, 59, 138, ... = A152172
[-3] 1, 1, 2, 2, 5, 6, 15, 24, 53, ...
[-4] 1, 1, 2, 1, 6, -2, 24, -23, 102, ...
[-5] 1, 1, 2, 0, 9, -18, 77, -226, 765, ...
[-6] 1, 1, 2, -1, 14, -48, 222, -921, 3914, ...
[-7] 1, 1, 2, -2, 21, -98, 531, -2756, 14373, ...
Row index written as [m] is corresponding to A377441(m, k).
CROSSREFS
Cf. A377441 (The main entry for this sequence).
Cf. A105633 (row -1), A152172 (row -2).
Cf. A000108 (row 0), A254316 (row 1).
Cf. A000012 (Hankel transform of row 0), A006720 (Hankel transform of row 1).
Cf. A330025 (Hankel transform of row -1), A328380 (Hankel transform of row -2).
Sequence in context: A000361 A246596 A135723 * A125311 A341359 A127568
KEYWORD
sign,tabl
AUTHOR
Thomas Scheuerle, Nov 04 2024
STATUS
approved