login
A125311
Array giving number of (k,2)-noncrossing partitions of [n], read by antidiagonals.
3
1, 1, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 2, 5, 14, 1, 1, 2, 5, 15, 42, 1, 1, 2, 5, 15, 51, 132, 1, 1, 2, 5, 15, 52, 188, 429, 1, 1, 2, 5, 15, 52, 202, 731, 1430, 1, 1, 2, 5, 15, 52, 203, 856, 2950, 4862, 1, 1, 2, 5, 15, 52, 203, 876, 3868, 12235, 16796
OFFSET
0,6
COMMENTS
A partition is (k,2)-noncrossing if it avoids the pattern 12...k12.
LINKS
Toufik Mansour and Simone Severini, Enumeration of (k,2)-noncrossing partitions, Discrete Math., 308 (2008), 4570-4577.
EXAMPLE
Table begins:
k\n| 0 1 2 3 4 5 6 7 8 9 10 11 12
2| 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012
3| 1 1 2 5 15 51 188 731 2950 12235 51822 223191 974427
4| 1 1 2 5 15 52 202 856 3868 18313 89711 450825 2310453
5| 1 1 2 5 15 52 203 876 4112 20679 109853 608996 3488806
6| 1 1 2 5 15 52 203 877 4139 21111 115219 666388 4045991
MATHEMATICA
b[j_, j_] := 1;
b[i_, j_] := j x Product[s x - 1, {s, i + 1, j - 1}];
y[k_] := (1 - (k - 2) x - Sqrt[(1 - k x)^2 - 4 x^2]) / (2 x (1 - (k - 2) x));
s[k_, op_] := Sum[(-1)^(i + j) op[x, i] b[i, j], {j, 0, k - 2}, {i, 0, j}];
p[k_] := (x^(k - 1) y[k]/(1 - x y[k]) + s[k, Power]) / (1 - s[k, Times]);
t[n_, k_] := SeriesCoefficient[p[k], {x, 0, n}];
Print@Flatten@Table[t[n, ad - n + 2], {ad, 0, 10}, {n, 0, ad}]
(* Andrey Zabolotskiy, Sep 14 2021 *)
CROSSREFS
Cf. A000110.
Sequence in context: A246596 A135723 A377442 * A341359 A127568 A263791
KEYWORD
nonn,tabl
AUTHOR
Jonathan Vos Post, Dec 10 2006
EXTENSIONS
Offset corrected by Joerg Arndt, Apr 18 2014
More terms from Andrey Zabolotskiy, Sep 14 2021
STATUS
approved