login
A377441
Square array T(n, k) read by rising antidiagonals. Row n has the ordinary generating function (-(n*x^3-(n+1)*x^2+x) + sqrt((n*x^3-(n+1)*x^2+x)^2 - 4*(x^3-x^2)*((n+1)*x^2-x)))/(2*(x^3-x^2)).
2
1, 1, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 2, 6, 14, 1, 1, 2, 7, 21, 42, 1, 1, 2, 8, 30, 78, 132, 1, 1, 2, 9, 41, 136, 299, 429, 1, 1, 2, 10, 54, 222, 630, 1172, 1430, 1, 1, 2, 11, 69, 342, 1221, 2959, 4677, 4862, 1, 1, 2, 12, 86, 502, 2192, 6774, 14058, 18947, 16796, 1, 1, 2, 13, 105, 708, 3687, 14129, 37853, 67472, 77746, 58786, 1, 1, 2, 14, 126, 966, 5874, 27184
OFFSET
0,6
COMMENTS
The Hankel sequence transform of row n satisfies the Somos-4 recurrence c(k) = (c(k-1) * c(k-3) + n*c(k-2)^2) / c(k-4). All Somos-4 sequences which are beginning with 1, 1, 1, 1, n, ... will be covered, but the Hankel transform will start with the terms 1, n, ... in each case.
FORMULA
The generating function A(x) of row n satisfies: 0 = (x^3 - x^2)*A(x)^2 + (n*x^3 - (n+1)*x^2 - x)*A(x) + ((n+1)*x^2 - x).
Let d(m, n) = ( d(m-3, n)*d(m-2, n) + n)/( d(m-5, n)*d(m-4, n)*d(m-3, n)^2*d(m-2, n)^2*d(m-1, n) ) for m = even and d(m, n) = 1/( d(m-1, n)*d(m-2, n) ) for m = odd with d( < 1 , n) = 1, then the generating function of row n can be expanded as continued fractions: 1/(1 - x/(1 - d(0, n)*x/(1 - d(1, n)*x/(1 - d(2, n)*x/(...))))).
d(m, n)*d(m+1, n) is a rational solution in x of the elliptic equation y^2 = -4*x^3 + ((n+1)^2 + 8)*x^2 - 2*(n+3)*x + 1. The division polynomials for multiples of the point with x = 1, correspondent to the Hankel transform of row n in the array T(n, k).
T(n, k + 2) = Sum_{j >= 0} A377443(k, j)*n^j. This polynomial starts with A000108(k+2) + A371965(k+2)*n + ..., where A371965 is known to count peaks in the set of Catalan words of length k.
EXAMPLE
The array begins:
[0] 1, 1, 2, 5, 14, 42, 132, 429, 1430, ... = A000108
[1] 1, 1, 2, 6, 21, 78, 299, 1172, 4677, ... = A254316
[2] 1, 1, 2, 7, 30, 136, 630, 2959, 14058, ...
[3] 1, 1, 2, 8, 41, 222, 1221, 6774, 37853, ...
[4] 1, 1, 2, 9, 54, 342, 2192, 14129, 91494, ...
[5] 1, 1, 2, 10, 69, 502, 3687, 27184, 201045, ...
PROG
(PARI)
T(n, max_k) = Vec(-2*((n+1)*x-1)/((x-1)*(n*x-1)+((n*x^2-(n+1)*x+1)^2-4*x*(x-1)*((n+1)*x-1)+O(x^max_k))^(1/2)))
CROSSREFS
Cf. A377442 (extension for -n), A105633 (row -1), A152172 (row -2).
Cf. A000108 (row 0), A254316 (row 1).
Cf. A000012 (Hankel transform of row 0), A006720 (Hankel transform of row 1).
Cf. A330025 (Hankel transform of row -1), A328380 (Hankel transform of row -2).
Sequence in context: A341359 A127568 A263791 * A327722 A334548 A143364
KEYWORD
nonn,tabl,changed
AUTHOR
Thomas Scheuerle, Oct 28 2024
STATUS
approved