login
A374106
a(n) = gcd(A113177(n), A328845(n)), where A113177 is fully additive with a(p) = Fibonacci(p) and A328845 is the first Fibonacci-based variant of the arithmetic derivative.
9
0, 1, 2, 2, 5, 1, 13, 3, 4, 3, 89, 4, 233, 1, 1, 4, 1597, 1, 4181, 1, 1, 9, 28657, 1, 10, 1, 6, 5, 514229, 1, 1346269, 5, 1, 1, 2, 6, 24157817, 17, 5, 4, 165580141, 1, 433494437, 1, 3, 7, 2971215073, 2, 26, 1, 1, 1, 53316291173, 1, 2, 4, 1, 3, 956722026041, 1, 2504730781961, 1, 1, 6, 2, 1, 44945570212853, 3, 1, 1
OFFSET
1,3
LINKS
FORMULA
For all n >= 1, a(A000040(n)) = A030426(n).
PROG
(PARI)
A113177(n) = if(n<=1, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2]*fibonacci(f[i, 1])));
A328845(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(f[i, 1])/f[i, 1]));
A374106(n) = gcd(A113177(n), A328845(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 28 2024
STATUS
approved