login
A374105
Numbers k such that (9^k + 3^k + 1)/13 is prime.
0
2, 5, 7, 11, 541, 1583, 2713, 2963, 13831, 22349, 22669, 23833, 57287
OFFSET
1,1
COMMENTS
Conjecturally all terms are prime. There are no composite terms < 24000.
57287 will be the next term if there are no composite terms below. There are no other prime terms < 100000.
Terms > 2963 correspond to probable primes.
EXAMPLE
5 is a term because (9^5 + 3^5 + 1)/13 = 4561 is prime.
PROG
(PARI) isok(k)={k%3 && ispseudoprime((9^k + 3^k + 1)/13)}
{ for(k=1, 2000, if(isok(k), print1(k, ", "))) }
CROSSREFS
Sequence in context: A260108 A265791 A039679 * A088823 A302294 A007445
KEYWORD
nonn,more
AUTHOR
Aurelien Gibier, Jun 29 2024
EXTENSIONS
a(13) confirmed by Michael S. Branicky, Sep 13 2024
STATUS
approved