login
A007445
Inverse Moebius transform of primes.
(Formerly M1335)
19
2, 5, 7, 12, 13, 23, 19, 31, 30, 45, 33, 67, 43, 65, 65, 84, 61, 107, 69, 123, 97, 115, 85, 175, 110, 147, 133, 179, 111, 223, 129, 215, 175, 203, 179, 302, 159, 235, 215, 315, 181, 337, 193, 315, 285, 287, 213, 451, 246, 371, 299, 393, 243, 461, 301, 461, 343
OFFSET
1,1
COMMENTS
From Davide Rotondo, Mar 09 2022: (Start)
Can be constructed by writing the sequence of prime numbers, then the sequence of prime numbers spaced by a zero, then the sequence of prime numbers spaced by two zeros, and so on. Finally add the values of the columns.
2 3 5 7 11 13 17 19 23 29 ...
0 2 0 3 0 5 0 7 0 11 ...
0 0 2 0 0 3 0 0 5 0 ...
0 0 0 2 0 0 0 3 0 0 ...
0 0 0 0 2 0 0 0 0 3 ...
0 0 0 0 0 2 0 0 0 0 ...
0 0 0 0 0 0 2 0 0 0 ...
0 0 0 0 0 0 0 2 0 0 ...
0 0 0 0 0 0 0 0 2 0 ...
0 0 0 0 0 0 0 0 0 2 ...
...
----------------------------------
Tot. 2 5 7 12 13 23 19 31 30 45 ... (End)
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
N. J. A. Sloane, Transforms
FORMULA
a(n) = Sum_{d|n} prime(d).
G.f.: Sum_{k>=1} prime(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 02 2017
EXAMPLE
a(6)=23 because the divisors of 6 are: 1, 2, 3 and 6; and prime(1) + prime(2) + prime(3) + prime(6) = 2 + 3 + 5 + 13 = 23.
MATHEMATICA
a[n_] := DivisorSum[n, Prime]; Array[a, 60] (* Jean-François Alcover, Dec 01 2015 *)
PROG
(PARI) je=[]; for(n=1, 150, je=concat(je, sumdiv(n, d, prime(d)))); j
CROSSREFS
Sequence in context: A374105 A088823 A302294 * A350129 A159699 A063217
KEYWORD
nonn
EXTENSIONS
More terms from Jason Earls, Jul 08 2001
STATUS
approved