login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369286
Triangle read by rows: T(n,k) is the number of non-isomorphic multiset partitions of weight n with k parts and no constant parts or vertices that appear in only one part, 0 <= k <= floor(n/2).
5
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 5, 2, 0, 0, 6, 3, 0, 0, 16, 16, 5, 0, 0, 22, 44, 13, 0, 0, 45, 135, 82, 11, 0, 0, 64, 338, 301, 52, 0, 0, 119, 880, 1233, 382, 34, 0, 0, 171, 2024, 4090, 1936, 211, 0, 0, 294, 4674, 13474, 9500, 1843, 87, 0, 0, 433, 10191, 40532, 40817, 11778, 873
OFFSET
0,15
COMMENTS
T(n,k) is the number of nonnegative integer matrices with sum of values n, k rows and every row and column having at least two nonzero entries up to permutation of rows and columns.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..675 (rows 0..50)
FORMULA
T(2*n,n) = A307316(n).
EXAMPLE
Triangle begins:
1;
0;
0, 0;
0, 0;
0, 0, 1;
0, 0, 1;
0, 0, 5, 2;
0, 0, 6, 3;
0, 0, 16, 16, 5;
0, 0, 22, 44, 13;
0, 0, 45, 135, 82, 11;
0, 0, 64, 338, 301, 52;
0, 0, 119, 880, 1233, 382, 34;
0, 0, 171, 2024, 4090, 1936, 211;
...
The T(6,2) = 5 multiset partitions are:
{{1,1,1,2}, {1,2}},
{{1,1,2,2}, {1,2}},
{{1,1,2}, {1,1,2}},
{{1,1,2}, {1,2,2}},
{{1,2,3}, {1,2,3}}.
The corresponding T(6,2) = 5 matrices are:
[3 1] [2 2] [2 1] [2 1] [1 1 1]
[1 1] [1 1] [2 1] [1 2] [1 1 1]
The T(6,3) = 2 matrices are:
[1 1] [1 1 0]
[1 1] [1 0 1]
[1 1] [0 1 1]
PROG
(PARI)
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
H(q, t, k)={my(c=sum(j=1, #q, if(t%q[j]==0, q[j]))); eta(x + O(x*x^k))*(1 + x*Ser(K(q, t, k))) + x*(1-c)/(1-x) - 1}
G(n, y=1)={my(s=0); forpart(q=n, s+=permcount(q)*exp(sum(t=1, n, subst(H(q, t, n\t)*y^t/t, x, x^t) ))); s/n!}
T(n)={my(v=Vec(G(n, 'y))); vector(#v, i, Vecrev(v[i], (i+1)\2))}
{ my(A=T(15)); for(i=1, #A, print(A[i])) }
CROSSREFS
Row sums are A321760.
Sequence in context: A112871 A249421 A359226 * A375694 A244813 A078110
KEYWORD
nonn,tabf
AUTHOR
Andrew Howroyd, Jan 28 2024
STATUS
approved