login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369288
Array read by antidiagonals: A(n,k) = the hypergraph Catalan number C_k(n), n >= 0, k >= 1.
7
1, 1, 1, 1, 1, 2, 1, 1, 6, 5, 1, 1, 20, 57, 14, 1, 1, 70, 860, 678, 42, 1, 1, 252, 15225, 57200, 9270, 132, 1, 1, 924, 299880, 7043750, 5344800, 139968, 429, 1, 1, 3432, 6358044, 1112865264, 6327749750, 682612800, 2285073, 1430, 1, 1, 12870, 141858288, 203356067376, 11126161436292, 10411817136000, 118180104000, 39871926, 4862
OFFSET
0,6
COMMENTS
Definition (from A362167): Let Trees(n) be the set of unlabeled trees on n vertices (see A000055). Let T be in Trees(n+1), and let v be a vertex of T. Then a (k,T)-tour beginning at v is a walk that begins and ends at v and traverses each edge of T exactly 2*k times. We denote by N(k,T)(v) the number of (k,T)-tours beginning at v.
The hypergraph Catalan numbers C_k(n) are defined by C_k(n) = Sum_{trees T in T(n+1)} Sum_{vertices v in T} N(k,T)(v)/|Aut(T)|, where Aut(T) denotes the automorphism group of the tree T.
See the Gunnells reference for a full definition and additional information.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
Paul E. Gunnells, Generalized Catalan numbers from hypergraphs, arXiv:2102.05121 [math.CO], 2021.
FORMULA
G.f. of column k: 1 + B_k(Series_Reversion(x^2/B_k(x))) where B_k(x) is the g.f. of column k of A060540.
EXAMPLE
Array begins:
n/k| 1 2 3 4 5 ...
---+-----------------------------------------------------------------
0 | 1 1 1 1 1 ...
1 | 1 1 1 1 1 ...
2 | 2 6 20 70 252 ...
3 | 5 57 860 15225 299880 ...
4 | 14 678 57200 7043750 1112865264 ...
5 | 42 9270 5344800 6327749750 11126161436292 ...
6 | 132 139968 682612800 10411817136000 255654847841227632 ...
...
PROG
(PARI) \\ here L(k, n) is k-th column of A060540 as g.f.
L(k, n)={sum(n=1, n, (n*k)!*x^n/(k!^n*n!), O(x*x^n))}
HypCatColGf(k, n)={my(p=L(k, n)); 1 + subst(p, x, serreverse(x^2/p))}
M(n, m=n+1)={Mat(vector(m, k, Col(HypCatColGf(k, n))))}
{ my(A=M(7, 5)); for(i=1, matsize(A)[1], print(A[i, ])) }
CROSSREFS
Row 2 is A000984.
Sequence in context: A249673 A144655 A190782 * A330490 A199063 A140956
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 01 2024
STATUS
approved