OFFSET
0,4
COMMENTS
Multigraphs with no loops and no vertices of degree 1.
The initial terms were computed with Nauty.
Conjecturally, the asymptotic number of completely symmetric polynomials of degree n up to momentum conservation in the limit as the number of particles increases.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50
P. T. Komiske, E. M. Metodiev, and J. Thaler, Cutting Multiparticle Correlators Down to Size, arXiv:1911.04491 [hep-ph], 2019-2020.
Brendan McKay and Adolfo Piperno, nauty and Traces.
FORMULA
Euler transform of A307317.
EXAMPLE
For n=4 the multigraphs (as sets of edges) are {(0,1),(1,2),(2,3),(3,0)}, {(0,1),(0,1),(1,2),(2,0)}, {(0,1),(0,1),(0,1),(0,1)}, {(0,1),(0,1),(1,2),(1,2)}, and {(0,1),(0,1),(2,3),(2,3)}.
PROG
(PARI) \\ See also A370063 for a more efficient program.
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
seq(n)={my(s=0); forpart(p=2*n, s+=permcount(p)*prod(i=1, #p, 1-x^p[i])/edges(p, w->1-x^w + O(x*x^n))); Vec(s/(2*n)!)} \\ Andrew Howroyd, Feb 01 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Patrick T. Komiske, Apr 02 2019
EXTENSIONS
a(0)=1 prepended and a(17) onwards from Andrew Howroyd, Feb 01 2024
STATUS
approved