login
A363738
Number of ordered partitions of n into cubes > 1.
1
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 4, 0, 0, 1, 0, 1, 0, 0, 5, 0, 0, 3, 0, 2, 0, 0, 6, 0, 0, 6, 0, 3, 0, 0, 7, 0, 0, 10, 0, 4, 1, 0, 8, 0, 0, 15, 0, 5, 4, 0, 11, 0, 0, 21, 0, 6, 10, 0, 16, 0, 0, 28, 0, 7, 20, 0, 23
OFFSET
0,36
COMMENTS
This sequence is different from A278929.
LINKS
FORMULA
G.f.: 1/(1 - Sum_{k>=2} x^(k^3)).
a(0) = 1; a(n) = Sum_{k=2..n} A010057(k) * a(n-k).
EXAMPLE
a(43) = 3 because we have [27, 8, 8], [8, 27, 8] and [8, 8, 27].
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, ispower(j, 3)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 18 2023
STATUS
approved