login
A277143
Lexicographically least sequence of nonnegative integers that avoids 5/3-powers.
4
0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0
OFFSET
0,35
COMMENTS
This sequence is 7-regular.
More generally, if a/b is a rational number in the interval 5/3 <= a/b < 2 with gcd(b, 2) = 1 and gcd(a, b) = 1, then the lexicographically least sequence of nonnegative integers that avoids a/b-powers is (2 a - b)-regular.
LINKS
Lara Pudwell and Eric Rowland, Avoiding fractional powers over the natural numbers, arXiv:1510.02807 [math.CO] (2015).
FORMULA
a(7 n + 6) = a(n) + 1.
MATHEMATICA
(* This gives the first 2401 terms. *)
SubstitutionSystem[{n_ :> {0, 0, 0, 0, 1, 0, n + 1}}, {0}, {{4}}]
CROSSREFS
Cf. A277149, A277156, A277157 (sequences in the same family).
Sequence in context: A291147 A278929 A363738 * A239434 A033770 A216283
KEYWORD
nonn
AUTHOR
Eric Rowland, Oct 01 2016
STATUS
approved