login
A033770
Product t2(q^d); d | 11, where t2 = theta2(q)/(2*q^(1/4)).
1
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 2, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 1, 0, 2, 0, 0, 1, 0, 0, 0, 1, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 1
OFFSET
0,22
COMMENTS
Also the number of positive odd solutions to equation x^2 + 11*y^2 = 8*n + 12. - Seiichi Manyama, May 28 2017
LINKS
MATHEMATICA
QP=QPochhammer; s=QP[q^2]^2 (QP[q^22]^2/(QP[q] QP[q^11]))+O[q]^105; CoefficientList[s, q] (* Vincenzo Librandi, May 30 2017 *)
CROSSREFS
Sequence in context: A363738 A277143 A239434 * A216283 A262900 A242830
KEYWORD
nonn
EXTENSIONS
More terms from Seiichi Manyama, May 22 2017
STATUS
approved