login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361840
Square array T(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/(1 - 9*x*(1 - x)^k)^(1/3).
5
1, 1, 3, 1, 3, 18, 1, 3, 15, 126, 1, 3, 12, 90, 945, 1, 3, 9, 57, 585, 7371, 1, 3, 6, 27, 297, 3969, 58968, 1, 3, 3, 0, 78, 1629, 27657, 480168, 1, 3, 0, -24, -75, 207, 9216, 196290, 3961386, 1, 3, -3, -45, -165, -438, 459, 53217, 1411965, 33011550
OFFSET
0,3
FORMULA
n*T(n,k) = 3 * Sum_{j=0..k} (-1)^j * binomial(k,j)*(3*n-2-2*j)*T(n-1-j,k) for n > k.
T(n,k) = (-1)^n * Sum_{j=0..n} 9^j * binomial(-1/3,j) * binomial(k*j,n-j).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
3, 3, 3, 3, 3, 3, ...
18, 15, 12, 9, 6, 3, ...
126, 90, 57, 27, 0, -24, ...
945, 585, 297, 78, -75, -165, ...
7371, 3969, 1629, 207, -438, -444, ...
PROG
(PARI) T(n, k) = (-1)^n*sum(j=0, n, 9^j*binomial(-1/3, j)*binomial(k*j, n-j));
CROSSREFS
Columns k=0..3 give A004987, A361843, A361844, A361845.
Main diagonal gives A361847.
Sequence in context: A197272 A306773 A276639 * A361839 A160708 A040173
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Mar 26 2023
STATUS
approved