login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361843
Expansion of 1/(1 - 9*x*(1-x))^(1/3).
7
1, 3, 15, 90, 585, 3969, 27657, 196290, 1411965, 10261485, 75183147, 554480316, 4111617510, 30628393110, 229048769790, 1718666596692, 12933847045701, 97584913269675, 737953856289675, 5591915004100950, 42450848142844995, 322796964495941235
OFFSET
0,2
LINKS
FORMULA
n*a(n) = 3 * ( (3*n-2)*a(n-1) - (3*n-4)*a(n-2) ) for n > 1.
a(n) = (-1)^n * Sum_{k=0..n} 9^k * binomial(-1/3,k) * binomial(k,n-k).
a(n) = A004987(n)*hypergeom([1/2 - n/2, -n/2], [2/3 - n], 4/9). - Peter Luschny, Mar 27 2023
a(n) ~ 3^n * phi^(2*n + 2/3) / (Gamma(1/3) * 5^(1/6) * n^(2/3)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Mar 29 2023
MAPLE
A361843 := n -> (-9)^n*binomial(-1/3, n)*hypergeom([1/2 - n/2, -n/2], [2/3 - n], 4/9): seq(simplify(A361843(n)), n = 0..21); # Peter Luschny, Mar 27 2023
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(1/(1-9*x*(1-x))^(1/3))
CROSSREFS
Column k=1 of A361840.
Cf. A004987.
Sequence in context: A173695 A255688 A370186 * A097188 A025748 A366085
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 26 2023
STATUS
approved