login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361845
Expansion of 1/(1 - 9*x*(1-x)^3)^(1/3).
7
1, 3, 9, 27, 78, 207, 459, 567, -1926, -20763, -120123, -569349, -2410200, -9379449, -33818715, -112292001, -335018295, -837341388, -1317232530, 2358000072, 35974607355, 228270292803, 1148026536963, 5094839173779, 20667058966044, 77501033284779
OFFSET
0,2
LINKS
FORMULA
n*a(n) = 3 * ( (3*n-2)*a(n-1) - 3*(3*n-4)*a(n-2) + 3*(3*n-6)*a(n-3) - (3*n-8)*a(n-4) ) for n > 3.
a(n) = (-1)^n * Sum_{k=0..n} 9^k * binomial(-1/3,k) * binomial(3*k,n-k).
a(n) = (-9)^n*binomial(-1/3, n)*hypergeom([(1-3*n)/4, (2-3*n)/4, 3*(1-n)/4, -3*n/4], [1/3-n, 2/3-n, 2/3-n], 2^8/3^5). - Stefano Spezia, Jul 11 2024
MATHEMATICA
a[n_]:=(-9)^n*Binomial[-1/3, n]HypergeometricPFQ[{(1-3*n)/4, (2-3*n)/4, 3*(1-n)/4, -3*n/4}, {1/3-n, 2/3-n, 2/3-n}, 2^8/3^5]; Array[a, 26, 0] (* Stefano Spezia, Jul 11 2024 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(1/(1-9*x*(1-x)^3)^(1/3))
CROSSREFS
Column k=3 of A361840.
Cf. A361816.
Sequence in context: A048481 A269488 A027027 * A140348 A139561 A152169
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 26 2023
STATUS
approved