OFFSET
1,5
COMMENTS
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
EXAMPLE
The a(1) = 0 through a(9) = 8 partitions:
. . . (211) (221) (411) (322) (332) (441)
(311) (21111) (331) (422) (522)
(511) (611) (711)
(22111) (22211) (22221)
(31111) (41111) (33111)
(2111111) (51111)
(2211111)
(3111111)
For example, the partition y = (3,2,2,1) has multiplicities (1,2,1), and the multiset {1,1,2} has median 1, so y is not counted under a(8).
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], !IntegerQ[Median[Length/@Split[#]]]&]], {n, 30}]
CROSSREFS
These partitions have ranks A360554.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 22 2023
STATUS
approved