login
A359907
Number of strict integer partitions of n with integer median.
62
0, 1, 1, 1, 2, 1, 4, 2, 6, 4, 9, 6, 14, 10, 18, 16, 27, 23, 36, 34, 51, 49, 67, 68, 94, 95, 122, 129, 166, 174, 217, 233, 287, 308, 371, 405, 487, 528, 622, 683, 805, 880, 1024, 1127, 1305, 1435, 1648, 1818, 2086, 2295, 2611, 2882, 3273, 3606, 4076, 4496, 5069
OFFSET
0,5
COMMENTS
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
EXAMPLE
The a(1) = 1 through a(14) = 18 partitions (A..E = 10..14):
1 2 3 4 5 6 7 8 9 A B C D E
31 42 421 53 432 64 542 75 643 86
51 62 531 73 632 84 652 95
321 71 621 82 641 93 742 A4
431 91 731 A2 751 B3
521 532 821 B1 832 C2
541 543 841 D1
631 642 931 653
721 651 A21 743
732 6421 752
741 761
831 842
921 851
5421 932
941
A31
B21
7421
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&IntegerQ[Median[#]]&]], {n, 0, 30}]
CROSSREFS
For mean instead of median: A102627, non-strict A067538 (ranked by A316413).
This is the strict case of A325347, ranked by A359908.
The median statistic is ranked by A360005(n)/2.
A000041 counts partitions, strict A000009.
A051293 counts subsets with integer mean, median A000975, cf. A005578.
A058398 counts partitions by mean, see also A008284, A327482.
A326567/A326568 gives the mean of prime indices.
A359893, A359901, A359902 count partitions by median.
Sequence in context: A239242 A340621 A008733 * A244515 A154280 A004795
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 21 2023
STATUS
approved