login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355345
G.f.: Sum_{n=-oo..+oo} x^(n*(n+1)/2) * C(x)^(2*n-1), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
8
2, -2, -5, 6, -7, 14, -6, -9, 27, -30, 10, -11, 44, -77, 55, -10, -13, 65, -156, 182, -91, 14, -15, 90, -275, 450, -378, 140, -14, -17, 119, -442, 935, -1122, 714, -204, 18, -19, 152, -665, 1729, -2717, 2508, -1254, 285, -18, -21, 189, -952, 2940, -5733, 7007, -5148, 2079, -385, 22, -23, 230, -1311, 4692, -10948, 16744, -16445, 9867, -3289, 506
OFFSET
0,1
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n may be obtained from the following expressions; here, C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
(1) A(x) = Sum_{n=-oo..+oo} x^(n*(n+1)/2) * C(x)^(2*n-1).
(2) A(x) = Sum_{n>=0} x^(n*(n+1)/2) * (C(x)^(2*n-1) + 1/C(x)^(2*n+3)).
(3) A(x) = 1/C(x)^3 * Product_{n>=1} (1 + x^(n-1)*C(x)^2) * (1 + x^n/C(x)^2) * (1-x^n), by the Jacobi triple product identity.
(4) A(x) = 1/P(x)^3 + Sum_{n>=0} Sum_{k>=0} (-1)^k * (binomial(2*n+k+3,k) + binomial(2*n+k+2,k-1)) * x^((n+k)*(n+k+1)/2 + k), where P(x) = Product_{n>=1} 1/(1-x^n) is the partition function.
(5) a((n+k)*(n+k+1)/2 + k) = [x^k] (-1)^n*(2*n+1) + (1-x)/(1+x)^(2*n+4), for n >= 0, k >= 0.
(6) a((n+k)*(n+k+1)/2 + k) = (-1)^k*(binomial(2*n+k+3,k) + binomial(2*n+k+2,k-1)), for n >= 0, k >= 1.
EXAMPLE
G.f.: A(x) = 2 - 2*x - 5*x^2 + 6*x^3 - 7*x^4 + 14*x^5 - 6*x^6 - 9*x^7 + 27*x^8 - 30*x^9 + 10*x^10 - 11*x^11 + 44*x^12 - 77*x^13 + 55*x^14 - 10*x^15 - 13*x^16 + 65*x^17 - 156*x^18 + 182*x^19 - 91*x^20 + ...
such that
A(x) = ... + x^6/C(x)^9 + x^3/C(x)^7 + x/C(x)^5 + 1/C(x)^3 + 1/C(x) + x*C(x) + x^3*C(x)^3 + x^6*C(x)^5 + x^10*C(x)^7 + x^15*C(x)^9 + ... + x^(n*(n+1)/2) * C(x)^(2*n-1) + ...
also
A(x) = 1/C(x)^3 * (1 + C(x)^2)*(1 + x/C(x)^2)*(1-x) * (1 + x*C(x)^2)*(1 + x^2/C(x)^2)*(1-x^2) * (1 + x^2*C(x)^2)*(1 + x^3/C(x)^2)*(1-x^3) * (1 + x^3*C(x)^2)*(1 + x^4/C(x)^2)*(1-x^4) * ... * (1 + x^(n-1)*C(x)^2)*(1 + x^n/C(x)^2)*(1-x^n) * ...
where C(x) = 1 + x*C(x)^2 begins
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + ... + A000108(n)*x^n + ...
RELATED TABLE.
This sequence also forms the antidiagonals of the rectangular table given by:
n = 0: [ 2, -5, 14, -30, 55, -91, 140, -204, ...];
n = 1: [ -2, -7, 27, -77, 182, -378, 714, -1254, ...];
n = 2: [ 6, -9, 44, -156, 450, -1122, 2508, -5148, ...];
n = 3: [ -6, -11, 65, -275, 935, -2717, 7007, -16445, ...];
n = 4: [ 10, -13, 90, -442, 1729, -5733, 16744, -44200, ...];
n = 5: [-10, -15, 119, -665, 2940, -10948, 35700, -104652, ...];
n = 6: [ 14, -17, 152, -952, 4692, -19380, 69768, -224808, ...];
n = 7: [-14, -19, 189, -1311, 7125, -32319, 127281, -447051, ...];
n = 8: [ 18, -21, 230, -1750, 10395, -51359, 219604, -834900, ...];
...
in which row n has g.f.: (-1)^n*(2*n+1) + (1-x)/(1+x)^(2*n+4) for n >= 0.
Thus, the terms of this sequence obey the rule
a((n+k)*(n+k+1)/2 + k) = [x^k] ((-1)^n*(2*n+1) + (1-x)/(1+x)^(2*n+4)), for n >= 0, k = 0..n.
Equivalently,
a((n+k)*(n+k+1)/2 + k) = (-1)^k*(binomial(2*n+k+3,k) + binomial(2*n+k+2,k-1)), for n >= 0, k >= 1, with a(n*(2*n+1)) = 2*(2*n+1) and a((n+1)*(2*n+1)) = -2*(2*n+1) for n >= 0.
For example,
a((n+1)*(n+2)/2 + 1) = -(2*n+5) for n >= 0,
a((n+2)*(n+3)/2 + 2) = (n+2)*(2*n+7) for n >= 0,
a(n*(n+3)/2) = (-1)^n * (n+1)*(n+2)*(2*n+3)/6 for n >= 1,
a(2*n*(n+1)) = (-1)^n * (binomial(3*n+3,n) + binomial(3*n+2,n-1)) = (-1)^n * A355347(n), for n >= 1.
...
PROG
(PARI) {a(n) = my(A, C=1/x*serreverse(x-x^2 +O(x^(n+2))), M=ceil(sqrt(2*n+9)));
A = sum(m=-M, M, x^(m*(m+1)/2) * C^(2*m-1) ); polcoeff(A, n)}
for(n=0, 70, print1(a(n), ", "))
(PARI) {a(n) = my(A, M=ceil(sqrt(2*n+1)));
A = sum(m=0, M, sum(k=0, n-m*(m+1)/2, x^((m+k)*(m+k+1)/2 + k) * polcoeff( (-1)^m*(2*m+1) + (1-x)/(1+x +x^2*O(x^k))^(2*m+4) , k) )); polcoeff(A, n)}
for(n=0, 70, print1(a(n), ", "))
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 25 2022
STATUS
approved