OFFSET
0,6
COMMENTS
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
EXAMPLE
The a(4) = 1 through a(9) = 17 partitions:
(211) (221) (411) (322) (332) (441)
(311) (3111) (331) (422) (522)
(2111) (21111) (511) (611) (711)
(2221) (4211) (3222)
(3211) (5111) (3321)
(4111) (22211) (4311)
(22111) (32111) (5211)
(31111) (41111) (6111)
(211111) (221111) (22221)
(311111) (33111)
(2111111) (42111)
(51111)
(321111)
(411111)
(2211111)
(3111111)
(21111111)
For example, the partition y = (33111) has median 1, and the distinct parts {1,3} have median 2, so y is counted under a(9).
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Median[#]!=Median[Union[#]]&]], {n, 0, 30}]
CROSSREFS
These partitions are ranked by A360248.
A008284 counts partitions by number of parts.
A116608 counts partitions by number of distinct parts.
A360071 counts partitions by number of parts and number of distinct parts.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 05 2023
STATUS
approved