OFFSET
0,3
EXAMPLE
The a(1) = 1 through a(8) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (311) (33) (331) (44)
(31) (11111) (42) (511) (53)
(1111) (51) (3211) (62)
(222) (31111) (71)
(321) (1111111) (422)
(3111) (2222)
(111111) (3221)
(3311)
(5111)
(32111)
(311111)
(11111111)
For example, the partition (32111) has distinct parts {1,2,3} with mean 2, so is counted under a(8).
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], IntegerQ[Mean[Union[#]]]&]], {n, 0, 30}]
CROSSREFS
The strict case is A102627.
These partitions are ranked by A326621.
A008284 counts partitions by number of parts.
A116608 counts partitions by number of distinct parts.
A360071 counts partitions by number of parts and number of distinct parts.
The following count partitions:
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 02 2023
STATUS
approved