login
A082550
Number of sets of distinct positive integers whose arithmetic mean is an integer, the largest integer of the set being n.
23
1, 1, 3, 3, 7, 11, 19, 31, 59, 103, 187, 343, 631, 1171, 2191, 4095, 7711, 14571, 27595, 52431, 99879, 190651, 364723, 699071, 1342183, 2581111, 4971067, 9586983, 18512791, 35791471, 69273667, 134217727, 260301175, 505290271, 981706831, 1908874583, 3714566311
OFFSET
1,3
COMMENTS
Equivalently, number of nonempty subsets of [n] the sum of whose elements is divisible by n. - Dimitri Papadopoulos, Jan 18 2016
FORMULA
a(n) = A063776(n) - 1.
a(n) = A051293(n+1) - A051293(n). - Reinhard Zumkeller, Feb 19 2006
a(n) = A008965(n) for odd n. - Dimitri Papadopoulos, Jan 18 2016
G.f.: -x/(1 - x) - Sum_{m >= 0} (phi(2*m + 1)/(2*m + 1)) * log(1 - 2*x^(2*m + 1)). - Petros Hadjicostas, Jul 13 2019
a(n) = A309402(n,n). - Alois P. Heinz, Jul 28 2019
EXAMPLE
a(5) = 7: the seven sets are (1+2+3+4+5)/5 = 3, 5/1 = 5, (1+5)/2 = 3, (1+3+5)/3 = 3, (3+5)/2 = 4, (3+4+5)/3 = 4, (1+2+4+5)/4 = 3.
MATHEMATICA
Table[Length[Select[Select[Subsets[Range[n]], Max[#]==n&], IntegerQ[ Mean[ #]]&]], {n, 22}] (* Harvey P. Dale, Jul 23 2011 *)
Table[Total[Table[Length[Select[Select[Subsets[Range[n]], Length[#] == k &], IntegerQ[Total[#]/n] &]], {k, n}]], {n, 10}] (* Dimitri Papadopoulos, Jan 18 2016 *)
PROG
(PARI) a(n) = sumdiv(n, d, (d%2)* 2^(n/d)*eulerphi(d))/n - 1; \\ Michel Marcus, Feb 10 2016
(Python)
from sympy import totient, divisors
def A082550(n): return (sum(totient(d)<<n//d-1 for d in divisors(n>>(~n&n-1).bit_length(), generator=True))<<1)//n-1 # Chai Wah Wu, Feb 22 2023
CROSSREFS
Row sums of A267632.
Sequence in context: A362055 A358827 A022403 * A327397 A036056 A339586
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, May 03 2003
EXTENSIONS
a(22) from Harvey P. Dale, Jul 23 2011
a(23)-a(32) from Dimitri Papadopoulos, Jan 18 2016
STATUS
approved