login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359531
a(1) = 1, a(2) = -9; a(n) = -n^3 * Sum_{d|n, d < n} a(d) / d^3.
4
1, -9, -27, 8, -125, 243, -343, 0, 0, 1125, -1331, -216, -2197, 3087, 3375, 0, -4913, 0, -6859, -1000, 9261, 11979, -12167, 0, 0, 19773, 0, -2744, -24389, -30375, -29791, 0, 35937, 44217, 42875, 0, -50653, 61731, 59319, 0, -68921, -83349, -79507, -10648, 0
OFFSET
1,2
LINKS
FORMULA
a(n) is multiplicative with a(2)= -9, a(4)= 8, a(2^e)= 0 if e>2. a(p)= -p^3, a(p^e)= 0 if e>1, p>2.
G.f. A(x) satisfies x * (1 - x) = Sum_{k>=1} k^3 * A(x^k).
MATHEMATICA
f[p_, e_] := If[e == 1, -p^3, 0]; f[2, e_] := Switch[e, 1, -9, 2, 8, _, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 10 2023 *)
CROSSREFS
Partial sums give A360658.
Cf. A334659.
Sequence in context: A074954 A103952 A103955 * A365933 A109041 A227900
KEYWORD
sign,mult
AUTHOR
Seiichi Manyama, Apr 01 2023
STATUS
approved