login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227900
Expansion of eta(q)^9 * eta(q^5)^3 in powers of q.
2
1, -9, 27, -12, -90, 132, 81, -180, -153, 185, 252, -324, 162, 396, -555, -1264, 936, 1377, -220, 1080, -1188, -2268, -3303, 2640, 4975, 792, 2430, -972, -6930, -11880, 6752, 5616, 6804, 4576, -1665, 1836, -18954, 1980, -2376, 3700, -198, 10692, 567, -3024
OFFSET
1,2
LINKS
FORMULA
Euler transform of period 5 sequence [-9, -9, -9, -9, -12, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (5 t)) = 5^(9/2) (t/i)^6 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A227901.
G.f.: x * Product_{k>0} (1 - x^k)^9 * (1 - x^(5*k))^3.
EXAMPLE
G.f. = q - 9*q^2 + 27*q^3 - 12*q^4 - 90*q^5 + 132*q^6 + 81*q^7 - 180*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q QPochhammer[ q]^9 QPochhammer[ q^5]^3, {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A)^3 * eta(x^5 + A))^3, n))};
(Magma) A := Basis( CuspForms( Gamma1(5), 6), 45); A[1] - 9*A[2] + 27*A[3]; /* Michael Somos, Jan 08 2015 */
CROSSREFS
Cf. A227901.
Sequence in context: A359531 A365933 A109041 * A010817 A374074 A205973
KEYWORD
sign
AUTHOR
Michael Somos, Oct 15 2013
STATUS
approved